MIL-STD-1522A(US 28 MAY 1984 SUPERSEDING MIL-STD-1522 (USAF) 1 JULY 1972 # **MILITARY STANDARD** STANDARD GENERAL REQUIREMENTS FOR SAFE DESIGN AND OPERATION OF PRESSURIZED MISSILE AND SPACE SYSTEMS LIVERABLE DATA REQUIRED BY THIS DOCUMENT # **DEPARTMENT** OF AIR FORCE Washington, D.C. 20301 Standard General Requirements for Safe Design and **Operation** of Pressurized Missile and Space Systems ## MIL-STD-1522A (USAF) - 1. This military standard is approved for use by the Department of the Air Force, and is available for use by all departments and agencies-of the Department of Defense. - 2. Beneficial comments (recommendations, additions, or deletions) and any pertinent data which may be of use in improving this document should be addressed to: SD/ALM P.O. Box 92960 Worldway Postal Center Los Angeles, California 90009 by using the self addressed Standardization Document Improvement Proposal (DD Form 1426) appearing at the end of this document or by letter. #### MILITARY STANDARD STANDARD GENERAL REQUIREMENTS FOR SAFE DESIGN AND OPERATION OF PRESSURIZED MISSILE AND SPACE SYSTEMS #### TO ALL HOLDERS OF MIL-STD-1522A (USAF) 1. THE FOLLOWING PAGES OF MIL-STD-1522A HAVE BEEN REVISED AND SUPERSEDE THE PAGES LISTED: | NEW PAGE | DATE | SUPERSEDED PAGE | DATE | |-----------------|----------------------------|---------------------------------------|-------------| | 7 | 21 December | | 28 May 1984 | | 3
9 | 28 May 1984
21 December | (Reprinted without Change) 1984 9 | 28 May 1984 | | 10
33 | 28 May 1984
21 December | (Reprinted without Change) | 28 May 1984 | | 34 | 28 May 1984 | (Reprinted without Change) | - | | 39
40 | 21 December
28 May 1984 | 1984 39
(Reprinted without Change) | 28 May 1984 | - 2. RETAIN THIS NOTICE AND INSERT BEFORE TABLE OF CONTENTS. - 3. Holders of MIL-STD-1522A (USAF) will verify that page changes indicated above have been entered. This notice page will be retained as a check sheet. This issuance, together with appended pages, is a separate publication. Each notice is to be retained by rtocking points until the Military Standard is completely revised or cancelled. Custodian: Air Force - 19 Preparing Activity: Air Force - 19 (Project Number SAFT-F010) F #### MILITARY STANDARD ## STANDARD GENERAL REQUIREMENTS FOR 6AFE DE6106 AND OPERATION OF PRESSURIZED MISSILE AND SPACE SYSTEMS ### TO ALL HOLDERS OF MIL-STD-1522A (UBAF) 1. THE FOLLOWING PAGES OF MIL-STD-1522A (USAF) HAVE BEEB REVISED AND SUPERSEDE THE PAGES LISTED: | NEW PAG | E | DATE | | SUPE | RSEDED PA | \GE | | DATI | <u>C</u> | |---------------------------|----|---|------|------------|---------------|---------|----|------|----------------------| | 51 2 52 20 | 20 | November
November
May November 1984 | 1986 | (Reprinted | | Change) | 28 | May | 1984
1984
1984 | | 55
56 20 | 28 | November May 1984 | 1986 | (Reprinted | 55
without | Change) | 28 | May | 1984 | - 2. RETAIN THIS NOTICE AND INSERT BEFORE TABLE OF CONTENTS. - 3. Holders of MIL-STD-1522A (USAF) will verify that page changes indicated above have been entered. This notice page will be retained as a check sheet. This issuance, together with appended pages, is a separate publication. Each notice is to be retained by stocking point8 until the Military Standard is completely revised or cancelled. Custodian: Air Force - 19 Preparing Activity: Air Force - 19 (Project lumber SAFT-F017) Doc 1261b Arch 1202b Review Activity: Army - AR AREA SAFT <u>NISTRIBUTION STATEMENT A Approved for public release; distribution unlimited.</u> NOTICE OF VALIDATION INCH-POUND MIL-STD-1522A (USAF) NOTICE 3 04 SEP 92 #### MILITARY STANDARD # STANDARD GENERAL REQUIREMENTS FOR SAFEDESIGN AND OPERATION OF PRESSURES MISSILE AND SPACE SYSTEMS MIL-STD-1522A (USAF), dated 28 May 84, has been reviewed and stermined to be valid for use in acquisition. istodian: Air Force - 19 Preparing Activity: Air Force - 19 MSC N/A FSC 1810 INSTRUCTIONS: In a continuing effort to make our standardization documents better, the DoD provides this form for us submitting comments and suggestions for improvements. All users of military standardization documents are invited to prosuggestions. This form may be detached, folded along the lines indicated, taped along the loose edge (DO NOT STAPLE), mailed. In block 5, be u specific as possible about particular problem areas such a wording which required interpretation, too rigid, restrictive, loose, ambiguous, or was incompatible, and give proposed wording changes which would alleviate the problems. Enter in block 6 any remarks not related to a specific paragraph of the document. If block 7 is filled out, an acknowledgement will be mailed to you within 30 days to let you know that your comments were received and an being considered. **NOTE:** This form may not he used to request copies of documents, nor to request waivers, deviations, or clarification of specification requirements on current contacts. Comments submitted on the form do nat constitute or imply • uthoriutio to waive any portion of the referenced document(s) or to amend contractual requirements. & U.S. Government Printing Office: 1902-200-879/584 (Fold along this line) (Fold along this line) FFICIAL BUSINESS ENALTY FOR PRIVATE USC \$300 # **BUSINESS REPLY MAIL** FIRST CLASS PERMIT NO. 73236 WASHDC POSTAGE WILL BE PAIDBY no U.S. AIR FORCE SD/ALM P.O.Box 92960 Worldway Postal Center Los Angeles, CA 90009 NO POSTA NECESSA IF MAILE IN THE UNITED STA | STAND | DARDIZATION DOCU | | | SAL | | |--|------------------------------|---|----------------|---|-------------| | 1. DOCUMENT NUMBER | | ctions - Reverse Sid | | | | | | 2. DOCUMENT TITLE ST | andard Genera | l Requirements | For Safe Design | ar | | MTL-STD-1522A (USAF) 3. NAME OF SUBMITTING ORGAN | Operation of Pr | essurized Mis | 4. TYPE OF O | RGANIZATION (Merk | | | • | • • • | • | VEN | | | | | | V2 | | • | | |). ADDRESS (Street, City. State, ZIP | Codel | | → | USER | | | ADDRESS (DIVING City). Dida, 211 | | | MAN | UFACTURER | | | | | | | * | | | | | | | OTHER (Specify): | | | i. PROBLEMAREAS | · | | | | _ | | uwaph Number end Wording: | M T T TOO TO 1 MADE | ··· 401 (B. 50) 401 (B. 171) | | | r to the remarkable to the same of the same | | | | • | the the | | | | | | | | | | | | | | | | | | | b. Recommended Wording: | • | | | | | | | | | | c. Resson/Retionals for Recommen | dation: | | | • | . REMARKS | | | | | _ | •- | | | ٠, . | Part Alexander | | | | | | 34 | • | | 4 | | | | 1. 12 f 3 may | | • | , | | | | ent 8 | | | | | | | O. NAME OF SUBMITTER (Last, Fire | t,MI) - Option.1 | | | PHONE NUMBER (Include | An | | ' 5 <u>.</u> | | | Code) Opt | | | | MAILING ADDRESS (Street, City, S | State, ZIP Code) - Optional | | 8. DATE OF SI | JBMISSION (YYMMDD) | | | | | | | | | | -t ø | | | | | | · . . 4 Γ. ### FOREWORD This standard establishes the basic system safety criteria for pressurized systems used on Missiles and Space System-Aerospace Vehicle Equipment (AVE) and its related Ground Support Equipment (GSE). Itis applicable to all AVE and GSE which contain pressurized systems, subsystems or components. All criteria listed herein are mandatory design criteria when this standard is placed on contract. Each criterion will be reviewed for specific applicability to the projected new design, and when systems are approved for modification. Specific approval of the procuring activity is required prior to the exclusion, modification or revision of any criterion listed in this standard during the generation of design specifications for items of AVE and GSE which contain pressurized systems, subsystems or components thereof. MIL-STD-1522A (USAF) 28 MAY 1984 THIS PAGE INTENTIONALLY LEFT BLANK (FOR PURPOSE OF PAGING) # MIL-STD-1522A (USAF) 128 MAY 1984 # CONTENTS | | 0001-2002 | PACE | |---|---|---| | 1. | SCOPE | 1 | | 1.1 | Purpose | 1 | | 2. | REFERENCED DOCUMENTS | 3 | | 2.1 | Issues of Documents | 3
4 | | 3. | DEFINITIONS | 5 | | 3.1
3.3
3.4
3.5
3.6
3.1
3.15
3.12
3.14
3.15
3.14
3.15
3.17
3.18
3.19
3.12
3.22
3.23
3.24
3.25
3.27
3.29
3.3
3.3
3.3
3.3
3.3
3.3
3.3
3. | "A" Basis Allowables. Acceptance Tests. Applied Load (Stress) "B" Basis Allowables. Brittle Fracture. Burst Factor. Components. Composite Material. Critical Condition. Critical Stress Intensity Critical Flaw Damage Tolerance. Design Burst Factor Destabilizing Pressure Detrimental Deformation Ductile Fracture. Factor of Safety. Fatigue Fittings.
Flaw Fracture Control. Fracture Mechanics: Fracture Toughness. Hazard. Hydrogen Embrittlement. Initial Flaw. Leak-Before-Burst Limit Load. Lines Load Spectrum Margin of Safety. Max&mum Allowable Working Pressure. Pressure Cycle. Pressurized Structure Pressurized Structure Pressurized System. | 55555556666666666777777777778888888888111 | #### CONTENTS (Cont) **PAGE** 11 3.38 3.39 Proof Factor. 11 Proof Pressure. . . . 11 3.40 Oualification Tests • • • • • • 3.41 11 11 3.42 11 3.43 11 3.44 12 3.45 Stiffness . 12 Corrosion Cracking..... 3.46 Stress 12 3.47 12 3.48 Threshold Stress Intensity Factor 12 3.51 Ultimate Factor of Safety • • • • 12 3.52 12 3.53 12 Ultimate Pressure Factor. • • • • 3.54 3.55 Verification/Se-Certification Tests . . . 12 13 4. 13 4.1 System Analysis Requirements. 13 4.1.1 System Analysis. 13 4.1.2 14 4.2 General Design Requirements 14 4.2.1 Loads, Pressures and Environments. . . 14 4.2.2 4.2.3 15 15 4.2.4 16 4.2.5 Stress Analysis Requirements 17 4.2.6 4.2.7 17 Miscellaneous Requirements 17 4.3 17 4.3.1 Material Evaluation...... 4.3.2 18 18 4.3.3 Material Characterization. 19 4.4 Safe-Life Requirements. Fabrication and Process Control 4.5 19 4.6 Quality Assurance Requirements. 20 20 4.6.1 Inspection Plan. 21 4.6.2 21 4.6.3 22 4.6.4 22 Operations and Maintenance Requirements . 4.7 22 4.7.1 22 4.7.2 Safe Operating Limits. 23 4.7.3 Inspection and Maintenance 23 4.7.4 23 4.7.5 | | | (00.0) | | PAGE | |--|--|---|---|--| | 4.7.6
4.8
4.8.1
4.8.2
4.8.3 | Special R
Re-Act :
Multip | ntation | Hardware. | 24
24
24
25
25 | | 5. | DETAILED | REQUIREMENTS. | | 27 | | 5.1
5.1.1 | Pressu
Lea | osite Pressure Vore Vessels with Non
k-Before-Burst Fail | -Hazardous
ure Mode | 27 | | 5.1.1.1
5.1.1.2
5.1.1.3
5.1.1.4
5.1.1.5
5.1.2 | Fac
Saf
Qua
Acc
Re-
Pressu | E) | uirements quirements quirements irements Requirements. ttle Fracture | 29
29
29
31
31 | | 5.1.2.1
5.1.2.2
5.1.2.3
5.1.2.4
5.1.2.5
5.1.3 | Fac
Saf
Qua
Acc
Re-
Pressu | ctor of Safety 2equentification Test Receptance Test Requenter Test Requenter Test Bertification Test Bure Vessels Designed | uirements n Requirements quirements irements Requirements. Employing | 32
33
34
34
35 | | 5.1.3.1
5.1.3.2
5.1.3.3
5.1.3.4
5.1.3.5
5.1.4 | Fac
Saf
Qua
Acc
Re-
Pressu | rength of Materia
ctor of Safety Require-
le-Life Analysis Realification Test Receptance Test Require-
Certification Test receptance | uirements quirements quirements irements Requirements. Employing | 35
35
35
35
35 | | 5.1.4.1
5.1.4.2
5.1.4.3
5.2
5.2.1 | Qua
Acc
Re-
Composite
Compos | e ASME Boiler Code (Alification Test Receptance Test Requirementation Requirementation Pressure Vesseleardous Leak-Before-1 | quirements irements ements (GSE) sels s with Non- | 35 36 36 36 | | 5.2.1.1
5.2.1.2
5.2.1.3
5.2.1.4
5.2.1.5
5.2.2 | Mod
Fac
Saf
Qua
Acc
&-C
Compos
Bri | | uirements quirements quirements irements Requirements. s with zardous Leak- | 37
37
37
37
37
37 | | | | PAGI | |---|---|--| | 5.2.2.1
5.2.2.2
5.2.2.3
5.2.2.4
5.2.2.5
5.2.3 | Factor of Safety Requirements Safe-Life Requirements Qualification Test Requirement; Acceptance Test Requirements Re-Certification Test Requirements. Composite Pressure Vessels Designed Employing Strength of Materials | 37
38
38
38 | | 5.2.4 | (AVE) Composite Pressure Vessels Design&d' Employing the ASME Boiler Code | 38 | | 5.2.4.1
5.2.4.2
5.3
5.3.1
5.3.2
5.3.3
5.3.4
5.3.5 | Qualification Test Requirements Acceptance Test Requirements Components. Factor of Safety Requirements. Safe-Life Analysis Requirements. Qualification Test Requirements. Acceptance Test Requirements Re-Certification Test Requirements | 38
38
38
38
39
39
39 | | 6. | PRESSURIZED SYSTEM REQUIREMENTS | 41 | | 6.1
6.1.1.1
6.1.1.2
6.1.1.3
6.1.1.4
6.1.1.5
6.1.1.6
6.1.1.7
6.1.1.8
6.1.1.19
6.1.1.10
6.1.1.11
6.1.1.12
6.1.1.13
6.1.1.14
6.1.1.15 | General Pressurized System Requirements Design Features. Assembly. Routing Separation. Shielding Grounding Handling. Special Tools Test Points Common-Plug Test Connectors Individual Pressure and Return Test Connectors. Threaded Parts. Friction Locking Devices. Internally Threaded Bosses. Retainer or Snap Rings. Snubbers. Component Selection. | 41
41
41
41
41
42
42
42
42
42
42
42
42
42
42
42
42
42 | | 6.1.2.1
6.1.2.2
6.1.2.3
6.1.2.4
6.1.2.5
6.1.2.6 | Connections | 42
43
43
43
43
43 | | | CONTENTS (COITE) | PAGE | |------------------------|-------------------------------------|----------| | 6.1.2.8 | Pressure Regulators | 43 | | 6.1.2.9 | Flareless Tube Fittings • • • • • | 43
43 | | 6.1.2.10 | Manual Values and Regulators. • • • | | | 6.1.3 | Design Pressures | 44
44 | | 6.1.3.1 | Over Pressure | 44 | | 6.1.3.2 | Back Pressure | 44
44 | | 6.1.3.3 | Pressure Isolation | 44 | | 6.1.3.4 | Gas/Fluid Separation | 44 | | 6.1.3.5
6.1.4 | Compressed Gas Bleeding | 44 | | 6.1.4.1 | Design Loads | 44 | | 6.1.4.2 | Torque Loads | 44 | | 6.1.4.3 | Torque Loads | 44 | | 6.1.5 | Controls | 45 | | 6.1.5.1 | Interlocks. | 45 | | 6.1.5.2 | Multiple Safety Critical Functions. | 45 | | 6.1.5.3 | Critical Flows and Pressures | 45 | | 6.1.6 | Protection | 45 | | 6.1.7 | Electrical | 45 | | 6.1.7.1 | Hazardous Atmospheres | 45 | | 6.1.7.2 | Radio Frequency Energy. • • • • • | 45 | | 6.1.7.3 | Grounding | 45 | | 6.1.7.4 | Solenoids | 45 | | 6.1.7.5 | Electric Motor Driven Pumps | 46 | | 6.1.8 | Pressure Relief | 46 | | 6.1.8.1 | Requirement | 46 | | 6.1.8.2 | Flow Capacity | 46 | | 6.1.8.3 | Sizing | 46 | | 6.1.8.4 | Unmanned Flight Vehicle Servicing . | 46 | | 6.1.8.5 | Automatic Re $oldsymbol{1}$ ief | 46 | | 6.1.8.5.1 | Low Safety Factor | 46 | | 6.1.8.5.2 | Confinement | 46 | | 6.1.8.6 | Venting | 47 | | 6.1.8.7 | Relief Value Isolation | 47 | | 6.1.8.8 | Negative Pressure Protection | 47 | | 6.1.8.8.1 | Testing | 47 | | 6.1.8.8.2 | Storage and Transportation | 47 | | 6.1.8.9 | Reservoir Pressure Relief | 47 | | 6.1.8.10 | Air Pressure Control | 47 | | 6.1.9 | Contamination | 47 | | 6.1.9.1 | Filtering | 48 | | 6.1.9.1.1 | Fluid Filters | 48
48 | | 6.1.9.1.2 | Air Filters | | | 6.1.9.1.2.1 | Pressurized Reservoirs | 48
48 | | 6.1.9.1.2.2
6.1.9.2 | Unpressurized Reservoirs | 40
49 | | | Bleed Ports | 49 | | 6.1.9.2.1 | Location | 49 | | 6.1.9.2.2 | Auxiliary Bleed Ports | 47 | | 6.1.9.2.3 | Filler Cap Bleed | |-----------------------------|--| | 6.1.10 | Control Devices | | 6.1.10.1 | Directional Control Values | | 6.1.10.2 | Overtravel | | 6.1.10.3 6.1.10.4 | Pressure and Volume Control Stops. | | 6.1.10.4 | Manually Operated Levers. • • • • | | 6.1.10.5 | Limit Torque. | | 6.1.11 | Accumulator6 | | 6.1.11.1 | Accumulator Design. • • • • • • • | | 6.1.11.2 | Accumulator Gas Pressure Gages. • • | | 6.1.11.3 | Accumulator Identification. | | 6.1.12 | Flex Hose | | 6.1.12.1 | Installation | | 6.1.12.2 | Restraining Devices | | 6.1.12.3 | Flex Hose <i>Stress</i> . | | 6.1.12.3
6.1.12.4 | Temporary Installations • • • • • | | 6.2 | Hydraulic System Requirements | | 6.2.1 | Hydraulic System Components | | 6.2.1.1 | Component Integrity • • • • • • | | 6.2.1.1.1 | Component Selection | | 6.2.1.2 | Cycling | | 6.2.1.3 | Cycling | | 6.2.1.4 | Shutoff Valves | | 6.2.1.5 | Variable Response | | 6.2.1.6 | Fire Resistant Fluids • • • • • • | | 6.2.1.7 | Accumulators | | 6.2.1.8 | Adjustable Orifices • • • • • • | | 6.2.1.9 | Lock Valves | | 6.2.1.10 | Hydraulic Reservoir • • • • • • | | 6.2.2 | Pressure Limits | | 6.2.3 | Cavitation | | 6.2.3.1 | Inlet Pressure | | 6 2 3 2 | Inlet Pressure | | 6.2.3.2
6.2.4 | Redundancy | | 6.2.5 | Hydraulic Lockup | | 6.2.5.1 | Emergency Disengage | | 6.2.5.2 | Emergency By-Pass • • • • • • • | | 6.2.6 | Hydraulic System Pressure Relief | | 6.2.6.1 | Pump Pressure Relief | | 6.2.6.2 | Thermal Pressure Relief | | 6.2.6.3 | Location | | 6.3 | Pneumatic Systems Requirements | | 6.3.1 | Pneumatic System Components. • • • • • | | 6.3.1.1 | | | | Component Integrity • • • • • • • | | 6.3.1.2 | Configuration | | 6.3.1.3 | Compressors | | 6.3.1.4 | Actuators | | 6.3.1.5 | Adjustable Orifice Restrictors | | 6.3.2 | Controls | | トイソー | Manial Takeover | # MIL-STD-1522A (USAF) 28 MAY 1984 | | | FIGURES | PAGE | |----------|-----|--|------| | Figure | 1 | Total Energy
Contained in a Pressure Vessel | 9 | | | 2 | Pressure Vessel Design Verification Approach | 28 | | | | TABLES | PAGE | | Table | I | Stored Energy in a Pressure Vessel | 10 | | | II | Qualification Test Requirements | 32 | | | III | System Safety Factors | 39 | | | IV | Open Line Force Calculation Factor | 51 | | APPENDIX | | • | 57 | THIS PAGE INTENTIONALLY LEFT BLANK (FOR PAGING PURPOSES) ### SECTION 1 SCOPE - 1.1 PURPOSE This standard establishes requirements for the design and test of all pressurized systems for missiles, space vehicles and ground support equipment. These **requirements**, when implemented on a particular pressurized system, will **assure a** high level of confidence in achieving safe operation and mission success. - 1.2 APPLICATION All the requirements listed herein are mandatory requirements when this standard is placed on contract. Specific approval of the procuring activity is required prior to the exclusion, modification or revision of any requirement listed in this standard when design specifications are generated for pressurized systems, subsystems and components. When the system is intended for use on a launch test range, specific approval for exclusion of any requirement must be obtained by the **procurring** activity and the appropriate launch or test range approval authority. # MIL-STD-1522A (USAF) 28 MAY 1984 THIS PAGE INTENTIONALLY LEFT BLANK (FOR PAGING PURPOSES) ## SECTION 2 REFERENCED DOCUMENTS 2.1 ISSUES OF DOCUMENTS - The following documents of the issue in effect on the date of invitation for bids or request for proposal, form a part of this standard to the extent specified herein. SPECIFICATIONS MILITARY > MTL-E-6051 Electromagnetic Compatibility Requirements Systems MIL-S-8512 Support Equipment, Aeronautical, Special, General Specification for the Design of STANDARDS MILITARY > MIL-STD-1540 Test Requirements for Space Vehicles MIL-STD-1472 Human Engineering Design Criteria for Military Systems, Equipment, and Facilities HANDBOOKS MILITARY > MIL-HDBK-5 Metallic Materials and Elements for > > Aerospace Vehicle Structures MIL-HDBK-17 Plastic for Aerospace Vehicles Part 1 Reinforced Plastics **PUBLICATIONS** FEDERAL Title 49 Transportation DOT (Department of Trans- Code of Federal portation) CFR Regulation MIL-STD-1522A (USAF) 20 MAY 1984 OTHER AFML-TR-68-115 Aerospace Structural Metals Handbook MCIC-HB-01 Damage Tolerant Design Handbook, Air Force Materials Laboratory, Air Force Flight Dynamics Laboratory (Copies of specifications, standards, drawings, and publications required by contractors in connection with specific procurement functions should be obtained from the procuring activity or as directed by the contracting officer.) 2.2 Other Publications. The following documents form a part of this standard to the extent specified herein. Unless otherwise indicated, the issue in effect on date of invitation for bids or request for proposal shall apply. #### **PUBLICATIONS** Codes **ASME** Boiler and Pressure Vessel Codes, Section VIII, Division 1 and 2 ASME Boiler and Pressure Vessel Code, Section X. (Applications for copies should be addressed to **ASME Order** Department P.O. Box 3199, Grand Central Station, New York **New** York, 10163.) The Standards of the Hydraulic Institute (Applications for copies should be addressed to **Hydraulic** Institute, 712 **Lakewood** Center N, 14600 Detroit Ave., Cleveland, Ohio 44107.) # SECTION 3 DEFINITIONS **The** following definitions of significant terms are provided to insure precision of meaning and consistency of usage. In the event of a conflict, the definitions listed herein apply. - 3.1 "A" BASIS ALLOWABLES The "A" basis allowables of a material are the minimum mechanical strength values guaranteed by the material producers/suppliers such that at least 99% of the material they produce/supply will meet or exceed the specified properties with a 95% confidence level. - 3.2 <u>ACCEPTANCE TESTS</u> Acceptance tests are the required formal tests conducted on hardware to ascertain that the materials, manufacturing processes, and workmanship meet specifications and that the hardware is acceptable for delivery. - 3.3 <u>APPLIED LOAD (STRESS)</u> The actual applied load (stress) on a structure is the load (stress) imposed on the structure in the design environment. - 3.4 "B" BASIS ALLOWABLES The "B" basis allowables of a material are mechanical strength values specified by material producers/suppliers such that at least 90% of the materials they produce/supply will meet or exceed the specified properties witt a 95% conflictence level. - 3.5 <u>BRITTLE FRACTURE</u> Brittle fracture is a type of catastrophic failure in structural materials that usually occurs without prior plastic deformation and at extremely high speed. The fracture is usually characterized by a flat fracture surface with little or no shear lips (slant fracture surface) and at average stress levels below those of general yielding. - 3.6 BURST FACTOR The burst factor is a multiplying factor applied to the maximum expected operating pressure (MEOP) to obtain the design burst pressure. Burst factor is synonymous with ultimate pressure factor. - 3.7 <u>COMPONENTS</u> Components for purposes of this standard, are all elements of a pressurized system. - 3.8 <u>COMPOSITE MATERIAL</u> Composites are combinations of materials differing in composition or form on a macroscale. The constituents retain their identities in the composite. Normally the constituents can be physically identified and there is an interface between them. - 3.9 <u>CRITICAL **CONDITION**</u> The critical condition is the most severe environmental condition in terms of loads, pressures ard temperatures, or combination thereof imposed on structure, systems, subsystems, and components during service life. - 3.10 <u>CRITICAL STRESS INTENSITY</u> The stress intensity at which unstable **fracture** occurs. - 3.11 <u>CRITICAL FLAW</u> The critical flaw in a structural material is a flaw of sufficient size and shape that unstable **growth** will occur under the specific operating load and environment. - 3.12 <u>DAMAGE TOLERANCE</u> The damage tolerance of a structure is its ability to resist failure due to the presence of flaws, cracks, or other damage for a specified period of unrepaired usage. - 3.13 **DESIGN** BURST PRESSURE The design burst **p**ressure is a test pressure that pressurized components must withstand without rupture to demonstrate design adequacy in a qualification test. It is equal to the product of the maximum expected operating pressure, burst factor, and a factor to account for the difference in material properties between test and design temperatures. - 3.14 <u>DESTABILIZING PRESSURE</u> Any pressure that produces compressive stresses in pressurized structure. - 3.15 <u>DETRIMENTAL</u> **DEFORMATION** Detrimental **deformations** include all structural deformations, deflections, **or** displacements that prevent any portion of the structure from performing its intended function, or that reduce the probability of successful completion of the mission. - 3.16 <u>DUCTILE FRACTURE</u> Ductile fracture is a type of failure in structural materials generally preceded by large amounts of plastic deformation and **in** which the fracture surface **is** inclined to the direction of the applied stress. - 3.17 FACTOR OF SAFETY The factor of safety of a structure is the **ratio** of the allowable load to the limit load. - 3.18 <u>FATIGUE</u> Fatigue is the progressive localized permanent structural change that **occurs** in a material subjected to repeated or fluctuating loads at stresses having a maximum value less than the ultimate tensile strength of the material. Fatigue may culminate in cracks or fracture after a sufficient number of fluctuations. - 3.19 <u>FITTINGS</u> Fittings are local elements of a pressurized system **utilized** to connect lines, components and/or vessels within the system. - 3.20 FLAW A flaw is a local discontinuity in a structural material, such as a scratch, notch, crack or void. - 3.21 FRACTURE CONTROL Fracture control is a set of policies and procedures involving the application of analysis and design methodology, manufacturing technology and operating procedures to prevent structural failure due to the initiation of and/or propagation of flaws or crack-like deflects during fabrication, testing, and service life. - 3.22 FRACTURE MECHANICS Fracture mechanics is an engineering concept used to predict flaw-growth and fracture behavior of materials and structures containing cracks or crack-like flaws. - 3.23 FRACTURE TOUGHNESS (K_{Ic}) Fracture toughness is a material characteristic which reflects flaw tolerance and resistance to fracture and is equal to the value of the stress intensity factor at flaw instability. Fracture toughness is dependant on the environment, geometry and loading rate. - 3.24 HAZARD An existing or potential condition that can result inaccident. - 3.25 HYDROGEN EMBRITTLEMENT Hydrogen embrittlement is a mechanical- environmental failure process that results from the initial presence or absorption of excessive amounts of hydrogen in metals, usually in combination with residual or applied tensile stresses. - 3.26 <u>INITIAL FLAW</u> An initial flaw is a flaw in a structural material before the application of load or environment. - 3.27 <u>LEAK-BEFORE-BURST (LBB)</u> A fracture mechanics design concept **in** which it **is** shown that any initial flaw will grow through the wall of a pressure vessel and cause leakage rather than burst (catastrophic failure). - 3.28 LIMIT LOAD The limit load is the maximum anticipated load, or combination of loads, which a structure **may be** expected to experience during the performance of specified missions in specified environments Since the actual-loads that are experienced in service are in part random in nature, statistical methods for predicting limit loads are employed wherever
appropriate. - 3.29 <u>LINES</u> Lines are tubular elements of a pressurized system provided as a means for transferring fluids between components of the system. Included in this definition are flex hoses. - 3.30 <u>LOAD SPECTRUM</u> The load spectrum on a structure is a representation of the cumulative static and dynamic loadings anticipated for the structure under all expected operating environments. - 3.31 MARGIN OF SAFETY The margin of safety of a structure is the increment by which the allowable load (or **stress**) exceeds the applied load (or stress), for a specific design condition, expressed as a fraction of the applied load (or stress). Margin of Safety = $\frac{\text{ALLOWABLE LOAD (OR STRESS)}}{\text{APPLIED LOAD (OR STRESS)}} - 1$ - 3.32 MAXIMUM ALLOWABLE WORKING PRESSURE (MAWP) The maximum pressure at which a component can continuously operate based on allowable stress values and functional capabilities. MAWP is synonymous with MDOP (Maximum Design Operating Pressure) or "Rated Pressure". - 3.33 MAXIMUM OPERATING PRESSIJRE (MOP) (MEOP) The maximum pressure at which the system or component actually operates in a particular application. MOP is a convenience with MEOS (Maximum Expected Operating Pressure) or maximum working pressure. MOP includes the effects of temperature, transient peaks, vehicle acceleration, and relief valve tolerance. - 3.34 PRESSURE CYCLE A pressure cycle is a pressure increase greate than the threshold pressure (P_{TH}) followed by a pressure decrease greater than the P_{TH} unless otherwise specified. - 3.35 PRESSURE VESSEL A pressure vessel is a component of a pressurized system designed primarily As a container that stores pressurized fluids and: - (1) Contains stored energy of 14,240 foot-pounds (19,310 joules) or greater based on adiabatic expansion of a perfect gas, Figure 1; Table I; or - (2) Contains a gas or liquid which will create a mishap (accident) if released; or - (3) Will experience a design limit pressure greater than 100 psi. FIGURE 1. Total Energy Contained in a Pressure Vessel | TABLE I. Stored Energy in Pressure Vesse | TABLE | I. | Stored | Energy | in | Pressure | Vesse | |--|-------|----|--------|--------|----|----------|-------| |--|-------|----|--------|--------|----|----------|-------| | TABLE I. Stored | Energy in Pressure vesser | |--|---| | PRESSURE
VESSEL
PRESSURE | ENERGY EQUIVALENT
PER CUBIC FOOT OF
PRESSURE VESSEL | | PSIA | ft lbs | | 20
30
40
50
60
70
80
90
100
200
300
400
500
600
700
800
900
1000
2000
3000
4000
5000
6000
7000
8000
9000
1000
2000
3000
3000
4000
5000
6000
3000
3000
4000
5000
6000
3000
3000
4000
5000
6000
3000
3000
4000
5000
3000
3000
4000
5000
6000
3000
3000
4000
5000
6000
3000
3000
4000
5000
6000
3000
4000
5000
6000
3000
4000
5000
6000
3000
4000
5000
6000
3000
4000
5000
6000
7000
8000
3000
4000
5000
6000
7000
8000
3000
6000
7000
8000
3000
6000
7000
8000
3000
3000
6000
7000
8000
3000
3000
6000
7000
8000
3000
3000
3000
3000
3000
3000
3000
3000
3000
3000
3000
3000
3000
3000
3000
3000
3000
3000
3000
3000
3000
3000
3000
3000
3000
3000
3000
3000
3000
3000
3000
3000
3000
3000
3000
3000
3000
3000
3000
3000
3000
3000
3000
3000
3000
3000
3000
3000
3000
3000
3000
3000
3000
3000
3000
3000
3000
3000
3000
3000
3000
3000
3000
3000
3000
3000
3000
3000
3000
3000
3000
3000
3000
3000
3000
3000
3000
3000
3000
3000
3000
3000
3000
3000
3000
3000
3000
3000
3000
3000
3000
3000
3000
3000
3000
3000
3000
3000
3000
3000
3000
3000
3000
3000
3000
3000
3000
3000
3000
3000
3000
3000
3000
3000
3000
3000
3000
3000
3000
3000
3000
3000
3000
3000
3000
3000
3000
3000
3000
3000
3000
3000
3000
3000
3000
3000
3000
3000
3000
3000
3000
3000
3000
3000
3000
3000
3000
3000
3000
3000
3000
3000
3000
3000
3000
3000
3000
3000
3000
3000
3000
3000
3000
3000
3000
3000
3000
3000
3000
3000
3000
3000
3000
3000
3000
3000
3000
3000
3000
3000
3000
3000
3000
3000
3000
3000
3000
3000
3000
3000
3000
3000
3000
3000
3000
3000
3000
3000
3000
3000
3000
3000
3000
3000
3000
3000
3000
3000
3000
3000
3000
3000
3000
3000
3000
3000
3000
3000
3000
3000
3000
3000
3000
3000
3000
3000
3000
3000
3000
3000
3000
3000
3000
3000
3000
3000
3000
3000
3000
3000
3000
3 | 606
1991
3582
5313
7148
9066
11051
13093
15184
37849
62376
87968
114286
141146
168433
196070 | NOTE: To obtain the pressure vessel equivalent, multiply the energy equivalent per cubic foot by the vessel volume in cubic feet. - 3.36 <u>PRESSURIZED STRUCTURE</u> A pressurized structure is a structure **designed** both to carry internal pressure and vehicle structural loads. - 3.37 PRESSURIZED SYSTEM A pressurized system, as addressed in this document, comprises the pressure vessels or pressurized structure, lines, fittings, valves, etc., that are exposed to and designed by the pressure within these components. It does not include electrical control devices, etc., required to operate the system. - 3.38 **PROOF** FACTOR The proof factor is a multiplying factor applied to the limit load or MEOP to obtain proof load or proof pressure, for use **in** acceptance testing. - 3.39 PROOF PRESSURE The proof pressure is the test pressure that pressurized components shall sustain without detrimental deformation. The proof pressure is used to give evidence of satisfactory workmanship and material quality, and/or establish maximum initial flaw sizes. It is equal to the product of maximum expected operating pressure, proof pressure design factor, and a factor accounting for the difference in material properties between test and design temperature. - 3.40 <u>QUALIFICATION TESTS</u> Qualification tests are formal contractual demonstrations that the design, manufacturing, and assembly have resulted **in** hardware **conforming** to specification requirements. - 3.41 <u>RESIDUAL STRESS</u> Residual stress is a stress which remains in a **detail** part as a result of manufacturing processing, testing and operation. - 3.42 SAFE-LIFE Safe-life of a structure is the period during which the
structure is predicted not to fail in the expected operating environment. - 3.43 SERVICE LIFE The service life of a component or space vehicle is the total life expectancy of the item. The service life starts with the manufacture of the structure and continues through all acceptance testing, handling, storage, transportation, launch operations, orbital operations, refurbishment, retesting, reentry or recovery from orbit, and reuse that may be required or specified for the item. - 3.44 STABILIZING PRESSURE Any pressure which produces tensile stresses in a pressurized structure **is** a stabilizing pressure. - 3.45 <u>STIFFNESS</u> The stiffness of a structure is fts resistance to deflection under an applied load. - 3.46 <u>STRESS-CORROSION **CRACKING**</u> Stress-corrosion cracking is a mechanical-environmental induced failure process in which sustained tensile stress and chemical attack combine to initiate and propagate a flaw in a metal part. - 3.47 <u>STRESS INTENSITY FACTOR</u> (KI) The stress intensity factor is a parameter that describes the elastic stress field in the vicinity of a crack tip. - 3.48 <u>THRESHOLD PRESSURE</u> (PTH) Threshold pressure is a pressure change great enough to induce a stress which affects the flaw growth in a pressure vessel. - 3.49 THERMAL STRESS Thermal stress is a structural stress arising **from temperature** gradients and/or differential thermal deformation in or between structural components, assemblies, or systems. - 3.50 THRESHOLD STRESS INTENSITY FACTOR (X_{TH}) The threshold stress intensity factor is the maximum value of the stress intensity factor below which environmentally induced flaw-growth, under sustained static tensile stress, does not occur for a given material in a specified environment. - 3.51 <u>ULTIMATE LOAD</u> The ultimate load is the product of the limit load and the ultimate factor of safety. It is the maximum load which the structure must withstand without rupture or collapse in the expected operating environments. - 3.52 <u>ULTIMATE FACTOR **OF** SAFETY</u> The ultimate factor of safety of structure **1S** the **ratio of** the ultimate load to the limit load - 3.53 <u>ULTIMATE PRESSURE</u> The ultimate pressure is the product of the <u>MEOP</u> and the ultimate pressure factor. It is the maximum pressure which the structures-must withstand without rupture in the expected operating environment. - 3.54 <u>ULTIMATE PRESSURE FACTOR</u> The ultimate pressure factor is a multiplying factor applied to the MEOP to obtain ultimate pressure. - 3.55 <u>VERIFICATION/RE-CERTIFICATION TESTS</u> Verification/re-certification tests are tests conducted to verify/recertify the integrity of structures after some specific period of operation or storage or after exposure to some adverse conditions. # SECTION 4 GENERAL REQUIREMENTS This section presents general requirements for the analysis, design and verification of pressure vessels and pressurized structures. Included are requirements on system analysis, structural design, material selection, safe operating stress levels, fracture control, quality assurance and other special requirements. Pressure vessels and pressurized structures shall comply with the requirements specified in Section 4. Pressure vessels and pressurized structures designed fabricated, inspected, and tested in accordance with the **ASME** Boiler and Pressure Vessel Code, Section VIII Divisions 1 or 2, Section X; or (for GSE only) Title 49 Code of Federal Regulation shall comply with system analysis requirements (Section 4.1) only, # 4.1 SYSTEM ANALYSIS REQUIREMENTS - 4.1.1 System Analysis. Perform a detailed system functional analysis to determine that the operation, interaction, or sequencing of components shall not lead to unsafe conditions which could cause personnel injury or major damage to the vehicle, its booster, or associated ground equipment. The analysis shall identify any single malfunction or personnel error in operation of any component that will create conditions leading to an unacceptable risk to operating personnel or equipment. The analysis shall also evaluate any secondary or subsequent occurrence, failure, or component malfunction which, initiated by a primary failure, could result in personnel injury. Such items identified by the analysis shall be designated safety critical and will require the following considerations. - a. Specific Design Action - b. Special Safety Operating Requirements - c. Specific Hazard Identification and Proposed Corrective Action - d. Special Safety Supervision - 4.1.2 Systems analysis data. Systems analysis data will show that: - a. The system provides the capability of maintaining al: pressure levels in a safe condition in the event of interruption of any process or control sequence at any time during test or countdown. - b. Redundant pressure relief devices have mutually independent pressure escape routes. - c. In systems where pressure regulator failure may involve critical hazard to the crew or mission success, regulation is redundant and where passive redundant systems are specified includes automatic switchover. - d. When the hazardous effects of safety critical failures or malfunctions are prevented through the use of redundant components or systems, it shall be mandatory that all such redundant components or systems are operational prior to the initiation of irreversible portions of safety critical operations or events. # 4.2 GENERAL DESIGN REQUIREMENTS - 4.2.1 Loads, Pressures and Environments. The entire anticipated load-pressure-temperature **history** and associated environments throughout the service life shall be determined in accordance with specified mission requirements. As a minimum, the following factors and their 'statistical variations shall be considered: - a. The environmentally induced loads and pressures. - b. The environments acting **simultaneously** with these loads and pressures with their proper relationships. - c. The frequency of application of these loads, pressures, environments and their levels and duration. These data shall be used to define the design spectra which shall be used for both design analysis and testing. The design spectra shall be revised as the structural design develops and the loads analysis matures. 4.2.2 Strength Requirements. All pressure vessels and pressurized structures within the structural system shall possess sufficient strength to withstand limit loads and internal pressures in the expected operating environments throughout their respective service lives without experiencing detrimental deformation. They shall also withstand ultimate loads and internal pressures in the expected operating environments without experiencing rupture or collapse. Pressure vessels and pressurized structures shall be capable of withstanding ultimate external **loads** and ultimate external pressures (destabilizing) without collapse or rupture when internally pressurized to the minimum anticipated operating pressure. All pressure vessels and pressurized structures shall sustain proof pressure without incurring **gross** yielding or detrimental deformation and shall sustain de6 ign burst pressure without rupture. When proof tests are conducted at temperatures other than design temperatures, the change in material properties at the proof temperature shall be accounted for in determining proof pressure. Pressurized structures subject to instability modes of **failure** shall not collapse under ultimate loads nor degrade the functioning of any system due to elastic buckling deformation under limit loads. Evaluation of buckling strength shall consider the combined action of primary and secondary stresses and their effects on general instability, local or panel instability, and crippling. Design loads for buckling shall be ultimate loads, **excep**t that any load component that tend6 to alleviate buckling shall not be increased by the ultimate design factor. Destabilizing pressures shall be increased by the ultimate design factor, but internal stabilizing pressures shall not be increased unless they reduce structural capability. The margin of safety shall be positive and shall be determined by analysis or test at design ultimate and design limit levels, when appropriate, at the temperatures expected for all critical conditions. - 4.2.3 Stiffness Requirements. Pressure vessels and pressurized structures shall possess adequate Stiffness to preclude detrimental deformation at limit loads and pressures in the expected operating environments throughout their respective service lives. The stiffness properties of pressure vessels and pressurized structures shall be such as to prevent all detrimental instabilities of coupled vibration modes, minimize detrimental effects of the load6 and dynamics response which are associated with structural flexibility, and minimize adverse interaction with other vehicle systems. - 4.2.4 Thermal Requirements. Thermal effects, including heating rates, temperatures, thermal stresses and deformations, and changes in the physical and mechanical properties of the materials of construction shall be considered in the design of all pressure vessels and pressurized structures. These effects shall be based on temperature extremes which simulate those predicted for the operating environment plus a design margin as specified in MIL-STD-1540. #### MIL-STD-1522A (USAF) 28 MAY 1984 4.2.5 Stress Analysis Requirements. A detailed and comprehensive stress analysis of each pressure vessel and pressurized structure shall be conducted under the assumption of no crack-like flaws in the structure. The analysis shall determine stresses resulting from the combined effects of internal pressure, ground or flight loads, temperature and thermal gradients. Both primary membrane stresses and secondary bending stresses resulting from internal pressure shall be calculated to account for the effects of design discontinuities, design configuration and structural support
attachments. Loads shall be combined by using the appropriate limit or ultimate safety factors on the individual loads and comparing the results to material and/or geometric capabilities. Safety factors on internal pressures shall be as **determined** in Section 5.0. Safety factors on external (support) loads shall be as assigned to primary structure supporting the pressurized system. Classical solutions are acceptable if the design geometries and loading conditions are sufficiently simple and the results are sufficiently accurate to warrant their application. Finite element or finite difference structural analysis techniques shall be used to calculate the stresses, strains and displacements for complex design geometries and loading conditions. Local structural models shall be constructed, as necessary, to augment the overall structural model in areas crapidly varying stresses. Minimum material gage as specified in the design drawings shall be used in calculating stresses. The allowable material strengths shall reflect the effects of temperature, thermal cycling and gradients, processing variables, and time associated with the design environments. Minimum margins of safety associated with the parent materials, weldments and heat-affected zones shall be calculated and tabulated for all pressure vessels and pressurized structures along with their locations and stress levels. The margins of safety shall be positive against the strength and stiffness requirements of Section 4.2.2 and 4.2.3, respectively. Records of the stress analysis shall be maintained. The analysis shall include the input parameters, data, **assumptions**, rationales, methods, references, and a summary of significant analysis results, and safe-life analysis. The analysis shall be revised and updated to maintain currency for the life of the program. - 4.2.6 <u>Malfunction</u>. Pressure vessels and pressurized structures are not. required to withstand loads, pressures, or environments due to malfunctions that could create conditions outside the maximum expected mission requirements. - 4.2.7 Miscellaneous Requirements. The structural design of all pressure vessels and pressurized structures shall **emplov** proven processes and procedures for manufacture and repair.' The design **shall** emphasize the need for access, inspection, service, replacement, repair and refurbishment. For all reusable pressure vessels and reusable **pressurized** structures, the structural design shall permit these structures to be maintained in and refurbished to a flightworthy condition. Repaired and refurbished structure6 shall meet all stipulated condition6 of flightworthiness. ## 4.3 MATERIALS REQUIREMENTS 4.3.1 Material Selection. Material6 shall be selected on the basis of proven environmental compatibility, material strengths, fracture properties, and service life consistent with the overall program requirements. Material "A" allowable values shall be used for pressure vessels, and pressurized structures where failure of a single load path would result in loss of structural integrity. For redundant pressurized structures in which failure of a structural element would result in a safe redistribution of applied loads to other load-carrying members, material "B" allowables may be used. The fracture toughness shall be as high as practicable within the context of structural efficiency and damage tolerance. For pressurized systems to be analyzed with linear elastic fracture mechanics, fracture properties shall be accounted for in material selection. These properties include fracture toughness; threshold values of stress intensity under sustained loading; subcritical flaw-growth characteristic6 under sustained and cyclic loadings; the effects of fabrication and joining processes; the effects of cleaning agents, dye penetrants, coatings and proof-test fluids; and the effects of temperature, load spectra, and other environmental conditions. Materials which exhibit a low threshold stress intensity value, K_{TH} , in the expected operating environments shall not be used in pressure vessels and pressurized structures unless adequate protection from the operating environments can be demonstrated by tests. If the material has a threshold stress intensity factor, K_{TH} , of less than 60% of the critical stress intensity factor, K_{IC} , under the conditions of its application, it shall be mandatory to show, by a "worst case" fracture mechanics analysis that the low allowable threshold stress intensity factor will not precipitate premature structural failure. 4.3.2 Material Evaluation. The materials selected f design shall be evaluated with respect to material processing fabrication methods, manufacturing operations, refurbishment procedures and processes, and other pertinent factors which affect the resulting strength and fracture properties of the material in the fabricated as well as the refurbished configurations. (Reference Section 4.5) The evaluation shall ascertain that the mechanical properties, strengths and fracture properties used in design and analyses will be realized in the actual hardware and that these properties are compatible with the fluid contents and the expected operating environments. Materials which are susceptible to stress-corrosion cracking or hydrogen embrittlement shall be evaluated by performing sustained threshold-stress-intensity tests when applicable data are not available. - 4.3.3 Material Characterization. The allowable mechanical properties, strength and fracture properties of all materials selected for pressure vessels and pressurized structures shall be characterized in sufficient detail to permit reliable and high confidence predictions of their structural performance in the expected operating environments unless these properties are available from reliable sources such as MIL-HDBK-5, MIL-HDBK-17, ASTM Standards, AFML/AFFDL Damage Tolerant Design Handbook, MIL Specifications, Aerospace Structural Metals Handbook, and other sources approved by the procuring agency. Where material properties are not available, they shall be determined by test methods approved by the procuring agency. As a minimum, the characterization shall produce the following strength and fracture properties for the parent metals, weldments and heat-affected zones as a function of the fluid contents, loading spectra, and the expected operating environments, including proof-test environments: - a. Uniaxial tensile yield stress, σ_{ys} , and ultimate stress, σ_{u} ; - b. Fracture toughness K_{Ic} and K_{TH}; and, for pressurized systems to be analyzed with linear elastic fracture mechanics: - c. Sustained-stress flaw-growth data, da/dt vs AK; - d. Cyclic-stress flaw-growth data, **da/dn** vs AK and load ratio, R; and, - e. Empirical constants associated with the chosen flaw-growth models. Uniform test procedures shall be employed for determining material fracture properties as required. These procedures shall conform to recognized standards, such as test specifications of the American Society for Testing and Materials, and the Society of Automotive Engineers. The test specimens and procedures utilized shall provide valid test :ata for the intended application. Enough tests shall be conducted so that meaningful nominal values of fracture toughness and flaw-growth rate data corresponding to each alloy system, temper, product form, thermal and chemical environments and loading spectra can be established to evaluate compliance with **service** life requirements of Section 4.4. Test plans and results shall be approved by the procuring agency. ## 4.4 SAFE-LIFE REQUIREMENTS The safe-life shall be determined by **analys!**, test, or both and shall be at least four times the specified **service** life for those pressure vessels and pressurized structures which are not accessible for periodic inspection and repair. For those pressure vessels and pressurized structures which are readily accessible for periodic inspection and repair, the safe-life, as determined by analysis and test, shall be at least four times the interval between scheduled **re-certification**. All pressure vessels and pressurized structures which require periodic refurbishment to meet safe-life requirements shall be re-certified after each refurbishment **by** the same techniques and procedures used **in** the initial certification, unless an alternative re-certification plan has been approved by the **procurring** agency. # 4.5 FABRICATION AND PROCESS CONTROL REQUIREMENTS Proven processes and procedures for fabrication and repair shall be used to preclude damage or material degradation during material processing, **manufacturing** operations, and refurbishment. In particular, special attention shall be given to ascertain that the melt process, thermal treatment, welding -- JCSS, forming, joining, **machining**, drilling, grinding, repair and rewelding operations, etc., *e. within the state-of-the-art and have been used on similar ha *re. The fracture toughness, mechanical and physical properties of the **parent** materials, weldments and heat-affected zones shall be with in established design limits after exposure to the intended fabrication processes. The machining, forming, joining, welding, dimensional stability during the mal treatments, a through-thickness hardening characterial shall be compatible with the fabrication cesses to be encountered. Fracture control requir :nts and precautions shall be defined in applicable drawings ...d process specifications. Detailed fabrication instructions and controls shall be provided to insure proper implementation of the fracture control requirements. Special precautions shall be exercised throughout the manufacturing operations to guard against processing damage or other structural degradation. In addition, procurement requirements and controls shall be implemented to insure that suppliers and subcontractors employ fracture control procedur, and
precautions consistent with the fabrication and inspection processes intended for use during actual hardware fabrication. #### 4.6 QUALITY ASSURANCE REQUIREMENTS A quality assurance program, based on a comprehensive study of the product and engineering requirements, such as drawings, material specifications, process specifications, workmanship standard& design review records, and failure mode analysis, shall be *stablished to assure that the necessary non-destructive inspections and acceptance tests are effectively performed to verify that the product meets the requirements this document. The program shall insure that materials, parts, 'ubasemblies, assemblies, and all completed and refurbished ri are conform to applicable drawings and process fications: that no damage or degradation has occurred during materiai processing, fabrication, inspection, acceptance tests, shipping, storage, operational use and refurbishment; and that defects which could cause failure are detected or evaluated and corrected. As a minimum, the following consideration shall be included in structuring the quality assurance program. 4.6.1 <u>Inspection Plyn</u>. An inspection master plan shall be established prior to start of fabrication. The plan shall specify appropriate inspection points and inspection techniques for use throughout the program, beginning with material procurement and continuing through fabrication, assembly, acceptance proof test, operation, and refurbishment, as propriate. In establishing inspection points and inspection rechniques, consideration shall be given to the material characteristics, fabrication processes, design concepts, structural configuration and accessibility for inspection. Designs employing fracture mechanics techniques shall also include inspection for flaws. The flaw geometries shall encompass defects commonly encountered, including surface crack, corner crack, through-the-thickness crack at the edge of fistener hole, surface crack at the edge of bolt hole, and surface crack at the root of intersecting prismatic structural elements. Acceptance and rejection standards shall be established for each phase of inspection, and for each type of inspection technique. 4.6.2 Inspection Techniques. The selected non-destructive inspection (NDI) techniques must have the capability to determine the size, geometry, location and orientation of a flaw or defect; to obtain, where multiple flavexist, the location of each with respect to the other and the distance between them; and to differentiate among defect shape: from tight cracks to spherical voids. Two or more NDI methods shall be used for a part or assembly that cannot be adequately examined by only one method. The flaw detection capability of each selected NDI technique shall be based on past experience on similar hardware. Where this experience is not available or is not sufficiently extensive to provide reliable results, the capability, under production or operational inspection conditions, shall be determined experimentally and demonstrated by tests approved by the procuring agency on representative material product form, thickness, and design configuration. The flaw detection capability shall be expressed in terms of detectable crack length, crack depth, or crack area. To minimize the possibilit of proof test failure in pressure vessels the selected NDI technique(s) should be capable of detecting flaws smaller than critical size with a 90% probability of detection at a 95% confidence level. The most appropriate **NDI** technique(s) for detecting commonly encountered flaw types shall be used for all pressure vessels along with their flaw detection capabilities. The following criteria shall apply in defining the characteristics of part-through initial flaws in the event the selected NDI technique measures either the flaw length or the flaw depth, but not both. The depth of initial flaw shall be assumed to be one-half (1/2) the flaw length if the NDI technique measures only the flaw-length; whereas, for an NDI technique which measures only flaw-depth, the length of flaw shall be assumed to be twenty (20) times the depth. 4.6.3 <u>Inspection Data</u>. Inspection data in the form of flaw histories shall be maintained throughout the life of the pressure vessel and pressurized structure. These data shall be periodically reviewed and assessed to evaluate trends and anomalies associated with the inspection procedures, equipment and personnel, material characteristics, fabrication processes, design ${\bf concep}$ t and structural configuration. The result of this assessment shall form the basis of any required corrective action. 4.6.4 Acceptance Test. Every pressure vessel, and pressurized structure shall be proof-pressure tested in accordance with the requirements of Section 5.1, 5.2, and 5.3 as applicable to verify that the hardware has sufficient structural integrity to sustain the subsequent service loads, pressure, temperatures and environments. The temperature of the vessel shall be consistent with the critical use temperature, or, as an alternative, tests may be conducted at an alternate temperature if the test pressures are suitably adjusted to account for temperature effects on strength and fracture toughness. Accept/reject criteria shall be formulated prior to **acceptance** test. Every pressure vessel and pressurized structure shall not leak, rupture or experience gross yielding during acceptance testing. #### 4.7 **OPERATIONS AND MAINTENANCE** REQUIREMENTS. - 4.7.1 Operating Procedures. Operating procedures shall be established for each pressure vessel. These procedures shall be compatible with the safety requirements and **personnel** control requirements at the facility where the operations are Step-by-step directions shall be written with sufficient detail to allow a qualified technician or mechanic to accomplish the operations. Schematics which identify the location and pressure limits of relief valves and burst disc shall be provided, and procedures to insure compatibility of the **pressurizing** system with the structural capability of the pressurized hardware shall be established. Prior to initiating or performing a procedure involving hazardous operations with pressure systems, practice runs shall be conducted on non-pressurized systems until the operating procedures are well Initial tests shall then be conducted at pressure levels not to exceed 50% of the normal operating pressures until operating characteristics can be established and stabilized. Only qualified and trained personnel shall be assigned to work on or with high pressure systems. Warning signs with the hazard(s) identified shall be posted at the operations facility prior to pressurization. - 4.7.2 <u>Safe Operating Limits</u>. Safe Operating limits shall be established for each pressure vessel and each pressurized structure based on-the appropriate analysis and testing employed in its design and qualification per Section 5.0. These safe operating limits shall be summarized in a format which will provide rapid visibility of the important structural characteristics and capability. The desired information shall include, but not be limited to, such data as fabrication materials, critical design conditions, MEOP, nominal operating or working pressure, proof pressure, burst pressure, pressurization and depressurization sequence, operational cycle limits, design and operating temperatures, operational system fluid, cleaning agent, NDI techniques employed, permissible thermal and chemical environments, minimum margin of safety and potential failure mode. For pressurized systems with potential brittle fracture failure mode, the critical flaw sizes and maximum permissible flaw sizes shall also be included. Appropriate references to design drawings, detail analyses, inspection records, test reports, and other back-up documentation shall be indicated. - 4.7.3 Inspection and Maintenance. The results of the appropriate stress, and safe-life, analyses shall be used in conjunction with the appropriate results from the structural development and qualification tests to develop a quantitative approach to inspection and repair. Allowable damage limits shall be established for each pressure vessel and pressurized structure so that the required inspection interval and repair schedule can be established to maintain hardware to the requirements of this document. NDI technique(s) and inspection procedures to reliably detect critical structural defects and determine flaw size under the condition of use shall be specified. Detailed repair procedures shall be developed for use in field and depot levels. Procedures shall be established for recording, tracking, and analyzing operational data as it is accumulated to identify critical areas requiring corrective actions. Analyses shall include prediction of remaining life and reassessment of required inspection intervals. - 4.7.4 Repair and Refurbishment. When inspections reveal structural damane or defects exceeding the permissible levels, the damaged hardware shall be repaired, refurbished, or replaced, as appropriate. All repaired or refurbished hardware shall be re-certified after each repair and refurbishment by the applicable acceptance test procedure for new hardware to verify their structural integrity and to establish their suitability for continued service. - **4.7.5** Storage Requirements. When pressure vessels and pressurized structures are put into storage, they shall be protected against exposure to adverse environments which could cause corrosion or other forms of material degradation. In addition, they shall be protected against mechanical **damages** resulting from scratches, dents, or accidental dropping of the hardware. Induced stresses due to storage fixture constraints shall be minimized by suitable **storage** fixture design. In the event storage requirements are violated, re-certification sha' be required prior to acceptance for use. -
4.7.6 <u>Documentation</u>. Inspection, maintenance, and operation records shall be kept and maintained throughout the life of each pressure vessel and each pressurized structure. As a minimum, **the** records shall contain the following information: - a. Temperature, pressurization history, and pressurizing fluid for both tests and operations. - b. Number of pressurizations experienced as well as number allowed in safe-life analysis. - c. Results of any inspection conducted, including: inspector, inspection dates, inspection techniques employed, location and character of defects, defect origin and cause. - d. Storage condition. - e. Maintenance and corrective actions performed from manufacturing to operational use, including refurbishment. - f. S-ketches and photographs to show areas of **structur**, damage and extent of repairs. - **g.** Acceptance and re-certification test performed, including test conditions and results. - h. Analyses supporting the repair or modification which may influence future use capability. #### 4.8 SPECIAL REQUIREMENTS 4.8.1 Re-activated Pressurized Hardware. Pressure vessels and pressurized structures which are re-activated for use after an extensive period in either an unknown, unprotected, or unregulated storage environments shall be re-certified to ascertain their structural integrity and suitability for continued service before commitment to flight. Re-certification tests for pressurized hardware shall be in accordance with the appropriate Re-Certification Test Requirement (5.1.1.5, 5.1.2.5). - 4.8.2 Multiple Proof Tests. Multiple proof tests are generally not required or recommended except **in** special circumstances, as described below: - a. Re-activated pressurized hardware as described in Section 4.8.1. - b. Refurbished or repaired hardware (Section 4.7.4). - c. Hardware modification after the initial proof test. - d. Re-certification of hardware for additional service after it has been in service for its intended safe-life. - e. Re-certification of hardware designed for safe-life between regularly scheduled inspection. - f. Component testing prior to final assembly. - g. Proof test limitation resulting from inability of a single proof test to envelope the critical operational pressure, temperature, and external loading combinations. - h. Proof test limitation resulting from inability of the initial proof test to **verify** the entire service life capability of the hardware. - 4.8.3 Test Fluids. Proof-test fluids shall be compatible with the structural materials in the pressure vessels and pressurized structures. Proof test fluids shall not pose a hazard to test personnel. If such compatibility data **is** not available, required testing shall be conducted to demonstrate that the proposed test fluid does not have a deleterious effect on the article to be tested. MIL-STD-1522A (USAF) 28 MAY 1984 THIS PAGE INTENTIONALLY LEFT BLANK (FOR PAGING PURPOSES) # SECTION **5**DETAILED REQUIREMENTS Four approaches for the design, analysis and verification of pressure vessels are offered as illustrated in Figure 2. Selection of the approach to be used is dependent on the desired efficiency of design coupled with the level of analysis and verification testing required. Final selection shall be coordinated and/or defined by the procuring agency and the appropriate launch or test range approval authority. Approach A, Figure 2, illustrates the steps required for verification Of a pressure vessel designed with a burst factor equal to 1.5 or greater. This approach is not acceptable for the design and verification of ground support equipment. Based on the results of the failure mode determination, one of two distinct verification paths must be satisfied: 1) Leak-Before-Burst with leakage of the contents not creating a condition which could lead to a mishap (such as toxic gas venting or pressurization of a compartment not capable of the pressure increase), and 2) Brittle failure mode or Leak-Before-Burst in which, if allowed to leak, the leak causes a hazard. The verification requirements for path 1 are delineated in Sections 5.1.1 and 5.2.1, and the verification requirements for path 2 in Sections 5.1.2 and 5.2.2. Approach B, Figure 2, illustrates the steps required for verification of a pressure vessel designed with a burst factor equal to 2.0 or greater. This approach is not acceptable for USAF/SD use, or design and verification of ground support equipment. Verification requirements for' this approach are delineated in Sections 5.1.3 and 5.2.3. Approach C, Figure 2, illustrates the steps required for verification of a pressure vessel designed employing the **ASME** Boiler and Pressure Vessel Code. This approach is the only acceptable approach for ground support equipment. Additional requirements for airborne vehicle equipment and ground support equipment are delineated in Sections 5.1.4 and 5.2.4. #### 5.1 <u>NON-COMPOSITE PRESSURE VESSELS</u> This section is intended primarily for application to metallic pressure vessels but may be used for certain non-metallics with the approval of the procuring agency (for fiber reinforced composite pressure vessels, see Section 5.2). - NOTES: (1) CYCLETEST AT EITHERMEOPX 4 LIFE OR 1.5 MEOPX 2 LIFE - (2) GROUND SUPPORT EQUIPMENTREQUIREFUNCTIONALTESTONLY - (3) BURST OR DISPOSITION VESSELWITH APPROVAL 01 THE PROCURING AGENCY - (1) ADDITION IN IS NOT ACCEPTABLE FOR USAF/SD USE FIGURE 2. Pressure Vessel Design Verification Approach - 5.1.1 Pressure Vessels with Non-Hazardous Leak-Before-Burts (LBB) Failure Mode (Aerospace Vehicle Equipment, AVE) The LBB failure mode shall be demonstrated analytically or by test showing that an initial flaw of any size, considering a flaw shape range of $.05 \le a/2r < ...$ will propagate through the thickness of the pressure vessel before becoming critical. (See the Appendix for an acceptable analytical approach). - 5.1.1.1 Factor of Safety Requirements. Pressure vessels which satisfy the LBB **failure** mode criterion **may** be designed **conventionally,** wherein the design factors of safety and-test factors are selected on the basis of successful past experience or specified by codes and specifications. Unless otherwise specified, the minimum Design Burst Factor shall be 1.5. - 5.1.1.2 <u>Safe-Life Analysis Requirements</u>. In addition to the stress analysis conducted in accordance with the requirements of-Section 4.2.5, conventional fatigue-life analysis shall be performed, as appropriate, on the unflawed structure to ascertain that the pressure vessel, acted upon by the spectra of maximum expected operating loads, pressures and environments will meet the safe-life requirements of Section 4.4. Nominal values of fatigue-life characteristics of the structural materials shall be taken from reliable sources such as **MIL-HDBK-5**, ASTM Standards, MIL Specifications, the Aerospace Structural Metals Handbook, or other sources approved by the **procuring** agency. Safe-life requirements are met when Minor's **rule**, **exp**pressed as $$\sum_{i=1}^{k} \frac{n_i}{N_i} \leq 0.8$$ is satisfied. In this equation, $\mathbf{n_i} = 4$ times the number of calculated at stress level i, $\mathbf{N_i} =$ the number of cycles to failure at stress level. i, and $\mathbf{k} =$ number of stress levels considered in the analysis. The LBB failure mode criteria accepts the possibility of propagation of an existing flaw, through the thickness of the vessel wall, allowing leakage of the contained gas or liquid. In the event that this leakage would present a hazard, fracture mechanics analysis shall be required. (See Section 5.1.2.2) 5.1.1.3 Qualification Test Requirements. Qualification tests shall be conducted on **flight-quality** hardware to demonstrate structural adequacy-of **the** design. The test fixtures, support structures, and methods of environmental application shall not induce erroneous test conditions. The types of instrumentation and their locations in qualification tests shall be based on the results of the stress analysis of Section 4.2.5. The instrumentation shall provide sufficient data to ensure proper application of the accept/reject criteria, which shall be established prior to test. The sequences, combinations, levels, and duration of loads, pressure and environments shall demonstrate that design requirements have been met. Qualification testing shall include demonstration of the leak-before-burst failure mode by pre-flawed specimen testing, fatigue life by cycle testing and random vibration testing and ultimate strength by burst testing. The following delineates the required tests: #### a. Leak before burst testing The test may be conducted on coupons which duplicate the materials (parent material, weldment, and HAZ) and thicknesses of the pressure vessel or on a pressure vessel representative of the flight hardware. Test specimens shall be pre-flawed and cycled through the design spectrum to demonstrate stable flaw growth completely through the wall thickness. A sufficient number of tests is to be conducted to establish that all areas (thicknesses) and stress fields will exhibit a leak-before-burst mode of failure. This test may be partially or completely omitted if available materials data, directly applicable to the materials and methods of construction, are available to substantiate an analytical demonstration of the leak-before-burst failure mode. #### b. Pressure Testing Required qualification pressure testing levels are shown in Table IL. Requirement for application of external loads in combination with internal pressures during testing must be evaluated based on the relative magnitude and/or destabilizing effect of stresses due to the external load. If limit combined tensile stresses are enveloped by test pressure stresses, the application of external loads shall not be required. If the application of external loads is required, the load shall be cycled to limit for four times the predicted number of operating
cycles of the most severe design condition (eg. destabilizing load with constant minimum internal pressure or maximum additive load with constant maximum expected operating pressure). Qualification test procedure shall be approved by the procuring agency and the appropriate launch or test range approval authority. c. Random Vibration Testing Random Vibration qualification **testing** shall be performed per requirements of MIL-STD-1540 unless it can be shown the vibration requirement is enveloped by other qualification testing performed. - 5.1.1.4 Acceptance Test Requirements. Acceptance tests shall be conducted on every pressure vessel before commitment to flight. Accept/reject criteria shall be formulated prior to tests. The test fixtures and support structures shall be designed to permit application of all test loads without jeopardizing the flightworthiness of the test article. The Following are required as a minimum. - a. Non-Destructive Inspection. A complete inspection by the selected non-destructive inspection (NDI) technique(s) shall be performed prior to proof pressure test to establish the initial condition of the hardware. All pressurized hardware which requires periodic refurbishment to meet safe-life requirements shall undergo a complete post-refurbishment inspection prior to additional proof pressure tests. - b. Proof Pressure Test. Every pressure vessel shall be proof-pressure tested to verify that the materials, manufacturing processes, and workmanship meet design specifications and that the hardware is suitable for flight. The proof pressure shall be equal to: P_{proof} = (1 + Burst Factor)/2 x MEOP or $1.5 \times (MEOP)$ whichever is lower 5.1.1.5 Re-Certification Test Requirements. All refurbished pressure vessels shall be re-certified after each refurbishment by the acceptance test requirements for **new** hardware to verify their structural integrity and to establish their suitability for continued service before commitment to flight. Pressure vessels which have exceeded the approved storage environment (temperature, humidity, time etc.) shall also be re-certified by the acceptance test requirements for new hardware. | Test Item | No yield after | No Burst at(1, | |------------------|--|----------------------------| | Vessel #1(2) | | Burst Factor x MEOP | | Vessel #2 | Cycle at 1.5 x MEOP for 2 x predicted number of operating cycles. (50 cycles minimum) OT Cycle at 1.0 x MEOP for 4 x predicted number of operating cycles. (50 cycles minimum) | Burst Factor x MEOP | - (1) After demonstrating no burst at the defined test level, increase pressure to actual burst of vessel. Record actual burst pressure. - (2) Test may be deleted at discretion of procuring agency. # 5.1.2 Pressure Vessels with Brittle Fracture or Hazardous Leak-Before-Burst (LBB) Failure Mode (AVE) 5.1.2.1 Factor of Safety Requirements. Safe-life design methodology based on fracture mechanics techniques shall be used to establish the appropriate design factor of safety and the associated proof factor for pressure vessels which exhibit brittle fracture or hazardous leak-before-burst failure mode. The loading spectra, material strengths, fracture toughness and flaw-growth rates of the parent material and weldments, test program requirements, stress levels, and the compatibility of the structural materials with the thermal and chemical environments expected in service shall be taken into consideration. Nominal values of fracture toughness and flaw-growth rate data corresponding to each alloy system, temper and product form shall be used along with a life factor of four on specified service life in establishing the design factor of safety and the associated proof factor. Unless otherwise specified the minimum burst factor shall be 1.5. 5.1.2.2 <u>Safe-life Demonstration Requirements</u>. In addition to the stress analysis conducted **in** accordance with the requirements of Section 4.2.5, safe-life analysis of each pressure vessel covering the maximum expected operating loads and environments, shall be performed under the assumption of pre-existing initial flaws or cracks in the vessel. In particular, the analysis shall show that the pressure vessel with flaws placed in the most unfavorable orientation with respect to the applied stress and material properties, of sizes defined by the acceptance proof test or **NDI** and acted upon by the spectra of maximum expected operating loads and environments, will meet the safe-life requirements of Section 4.4. Nominal values of fracture toughness and flaw-growth rate data associated with each alloy system, temper, product form, thermal and chemical environments, and loading spectra shall be used along with a life factor of four on specified service life in all safe-life analyses. Pressure vessels which experience sustained stress shall also show that the corresponding applied stress intensity (KI) during operation is less than the threshold stress intensity (K_{TH}) in the appropriate environment # $K_{TH} > K_{I}$ The safe-life analysis shall be included in the stress analysis of Section 4.2.5. In particular, the fracture mechanics data, loading spectra and environments, flaw-growth model, initial flaw sizes, proof factors, strength and other input data, analysis assumptions, rationales, methods, references, summary of significant results, shall be clearly presented. Testing of structure under fracture control in lieu of safe-life analysis is an acceptable alternative, provided that, in addition to following a quality assurance program (Section 4.6) for each flight article, a qualification test program is implemented on pre-flawed specimens representative of the structure design. These flaws shall not be less than the flaw sizes established by the acceptance proof test or the selected NDI method(s). Safe-life requirements of Section 4.4 are considered demonstrated when the pre-flawed test specimens successfully sustain the limit loads and pressures in the expected operating environments for the specified test duration without rupture. #### MIL-STD-1522A (USAF) 28 MAY 1984 5.1.2.3 Qualification Test Requirements. Qualification tests shall be conducted on **flight-quality** hardware to demonstrate structural adequacy of the design. The test fixtures, support structures, and methods of environmental application shall not include erroneous test conditions. The types of instrumentation and their locations in qualification tests shall be based on the results of the stress analysis of Section 4.2.5. The instrumentation shall provide sufficient data to ensure proper application of the accept/reject criteria, which shall be established prior to test. The sequences, combinations, levels, and duration of loads, pressure and environments shall demonstrate that design requirements have been met. Qualification testing shall include life cycle testing, random vibration testing, and burst testing. The following delineates the required tests: #### a. Pressure Testing Required qualification pressure testing levels ore shown in Table 11. Requirement for application of external loads in combination with internal pressures during testing must be evaluated based on the relative magnitude and/or destabilizing effect of stresses due to the external load. If limit combined tensile stresses are enveloped by test pressure stresses, the application of external loads shall not be required. If the application of external loads is required, the load shall be cycled to limit for four times the predicted number of operating cycles of the most severe design condition (e.g., destabilizing load with constant minimum internal pressure, or maximum additive load with constant maximum expected operating pressure). Qualification test procedure shall be approved by the procuring agency and the appropriate launch or test range approval authority. #### b. Random Vibration Random vibration qualification testing shall be performed per requirements of MIL-STD-1540 unless it can be shown the vibration requirement is enveloped by other qualification testing perforned. 5.1.2.4 Acceptance lest requirements. The acceptance test requirements for pressure vessels which exhibit brit: tle fracture, Or hazardous' LRB, failure mode or-e identical to those with ductile fracture failure mode as defined in Section 5.1.1.4 except that the test level shall be that defined by the fracture mechanics analysis. Cryo-proof acceptance test procedures may be required to adequately verify initial flaw size. The pressure vessel shall not rupture **or** leak at the acceptance test pressure. - 5.1.2.5 <u>Re-certification Test Requirements</u>. All refurbished pressure vessels shall be re-certified after each refurbishment by the acceptance test requirements for new hardware to verify their structural integrity and to establish their suitability for continued service before commitment to flight. Pressure vessels which have exceeded the approved storage environment (temperature, humidity, time etc.) shall also be re-certified by the acceptance test requirements for new hardware. - 5.1.3 Pressure Vessels Designed Employing Strength of Materials (AVE). Pressure vessels may be designed and verified utilizing the following criteria which does not employ fracture mechanics techniques. Pressure vessel failure mode demonstration is not required. The DoD user of this approach should be aware that this approach is not acceptable for USAF/SD use. The pressure vessel is to be designed, analyzed and verified as defined in Section 5.1.1 with the following exceptions or changes to criteria. - 5.1.3.1 Factor of Safety Requirements The pressure vessel is to be designed to a minimum Proof Pressure = 1.5 x MEOP and a minimum Design Burst Pressure = 2.0 x MEOP. - 5.1.3.2
<u>Safe-Life Analysis Requirements</u> Requirements per Section **5.1.1.2.** - 5.1.3.3 <u>Qualification Test Requirements</u> Requirements per Section 5.1.1.3 except that Leak Before Burst testing is deleted. - 5.1.3.4 Acceptance Test Requirements Requirements per Section 5.1.1.4 except that proof test shall be conducted at 1.5 \times MEOP. - 5.1.3.5. <u>Re-Certification Test Requirements</u>- Requirements per Section **5.1.1.5.** - 5.1.4 Pressure Vessels Designed Employing the ASME Boiler Code (AVE & GSE). Pressure vessels may be designed and manufactured per the rules of the ASME Boiler and Pressure Vessel Code, Section VIII, Divisions 1 or 2. - 5.1.4.1 Qualification Test Requirements (For airborne systems required to satisfy Space Transportation System Safet: Requirements). Qualification testing shall consist of the cycle testing defined in Section 5.1.1.3b. - 5.1.4.2 <u>Acceptance Test Requirements</u> As specified in Code. AVE pressure vessels shall be proof; pressure tested at 1.5 x **MEOP.** This test may be accomplished when satisfying code requirements. - **5.1.4.3** Re-Certification Requirements (GSE) When no data is available concerning existing ground system pressure vessel or history of use, or if the origin of data is uncertain, perform a **detailed** investigation to determine the utility of the vessel. **This** investigation shall, as a minimum, include the following: - (a) Paint removal and thorough internal and external surface cleaning including removal of corrosion. - (b) Thorough internal and external surface inspection to determine extent of corrosion or any handling damage or cracks. - (c) Accurate measurement of minimum vessel wall thickness. - (d) Identification of construction materials. - (e) **Determination** of operating stress levels using proposed system maximum expected operating pressure. - (f) Analysis to determine the operating safety factor based on corrosion or other existing damage. - (g) Hydrostatic test to 150% of proposed maximum expected operating pressure. - (h) The using activity shall maintain reports of the above **investigation** as a part of the system records. ## 5.2 <u>COMPOSITE PRESSURE VESSELS</u> Pressure vessels fabricated of composite materials must satisfy the non-composite requirements of Section 5.1 with the following exceptions applicable to each design verification analysis approach. Composite vessels with metallic liners may be designed employing either of the two approaches. Composite vessels without a load carrying metallic liner may only be designed by the ASME code, (section 5.2.3 of this standard). The leak-before-burst or brittle failure mode designation for a metal lined composite vessel shall be based on the characteristics of the liner. Fracture mechanics methodology is not applicable to the composite overwrap. - 5.2.1 Composite Pressure Vessels with Non-Hazardous Leak-Before-Burst (LBB) Failure Mode (AVE). Applicable fracture mechanics analysis and/or tests of metal lined composite pressure vessels shall verify the leak-before-burst failure mode of the metal liner. - 5.2.1.1 <u>Factors of Safety Requirements</u>. Requirements per Section 5.1.1.1. - 5.2.1.2 <u>Safe-Life Analysis Requirements</u>. Requirements per Section **5.1.1.2**. - 5.2.1.3 **Qualification** Test **Requirements**. Qualification testing shall consist of the leak-before-burst demonstration of the liner and cycle/burst testing of the composite vessel as defined in Section 5.1.1.3. In particular the effects of the liner sizing operation on the fracture mechanics characteristics of the liner should be accounted for in **the** LBB evaluation. - 5.2.1.4 Acceptance Test Requirements. Acceptance tests shall be conducted as detined in Section 5 X.1.4. The substitution of the metal liner sizing operation for acceptance test is acceptable provided the requirements of Section 5.1.1.4 are satisfied. - 5.2.1.5 Re-Certification Test Requirements. Requirements per Section 5.1.1.5. (NOTE) Alternate re-certification procedure may be approved by the procuring and safety agencies. - 5.2.2 Composite Pressure Vessels with Brittle Fracture or Hazardous LBB Failure Mode (AVE). This section is applicable only to composite pressure vessels with metal liners which exhibit brittle fracture or hazardous leak-before-burst failure mode. - 5.2.2.1 Factor of Safety Requirements. Unless otherwise specified, the minimum burst factor shall be 1.5. - 5.2.2.2 <u>Safe Life Demonstration Requirements</u>. Requirements of Section 5.1.2.2 shall apply to the metal **line**. **Conventional** fatigue life analysis of the composite **overwrap** must verify the liner is the critical safe-life component. Analysis shall show the safe-life of the **overwrap** to be a factor of 10 longer than the safe-life of the liner. - 5.2.2.3 <u>Qualification Test Requirements</u>. Requirements per Section **5.1.2.3**. - 5.2.2.4 Acceptance Test Requirements. Acceptance test requirements shall be as defined in Section 5.1.2.4. The substitution of metal liner sizing operation for an acceptance test is acceptable provided the requirements of Section 5.1.2.4 are satisfied. The metal liner shall not leak at the proof test pressure. An additional Cryo type proof test of the liner, prior to composite overwrap, may be required to adequately verify the largest allowable initial flaw size present in the liner. - 5.2.2.5 <u>Re-certification Test Requirements</u>. The **re-certification** test requirements for all refurbished composite pressure vessels are as **d**efined in Section 5.1.1.5. - 5.2.3 Composite Pressure Vessels Designed Employing Strength of Materials (AVE) Composite pressure vessels, both load bearing metal lined and all composite, may be designed solverified utilizing the criteria of Section 5.1.3 which does not employ fracture mechanics techniques. - 5.2.4 Composite Pressure Vessels Designed Employing the ASME Boiler Code (AVE & GSE). Composite pressure vessels may be designed and manufactured per the rules of the ASME Boiler and Pressure Code, Section X. - 5.2.4.1 Qualification Test Requirements. (For airborne systems required to satisfy Space Teansportation System Requirements). Qualification testing shall consist of the cycle testing defined in Section 5.1.1.3b and random vibration testing defined in Section 5.1.1.3c. - 5.2.4.2 Acceptance Test Requirements. As specified in Code. AVE pressure vessels shall be proof pressure tested at 1.5 x MEOP. This test may be accomplished when satisfying code requirements. #### 5.3 COMPONENTS 5.3.1 Factors of Safety Requirements - Components excluding pressure vessels are to be **designed** to the minimum factors given in Table **III**. TABLE III. Systems Safety Factors | | PROOF | DESIGN
AVE | BURST
GSE | |--|-------|---------------|--------------| | Lines and fittings dfa < 1.5 in. | 1.5 | 4.0 | 4.0 | | dia ≥ 1.5 in. | 1.5 | 2.5 | 4.0 | | Fluid Return Sections | 1.5 | 3.0 | 4.0 | | Fluid Return Hose | 1.5 | 5.0 | 4.9 | | Other Components (Except Pressure Vessels) | 1.5 | 2.5 | 4.0 | Components subject to low or negative pressures shall be evaluated at 2.5 times maximum external pressure expected during service life. #### 5.3.2 Safe-Life Analysis Requirements. Not required. - 5.3.3 Qualification Test Requirements. Not required on lines and **fittings.** Internal/external pressure testing shall be conducted on all other components to demonstrate no failure at the design burst pressure. - 5.3.4 Acceptance Test Requirements. Acceptance test requirements shall be **satisfied** by completion of leak and/or proof test requirements for the assembled pressurized system as dictated by the applicable range safety documentation, and or procuring agency, requirements. - 5.3.5 <u>Re-Certification Test Requirements</u>. Re-certification of lines, fittings and components shall be as delineated in Section 5.3.5 as applied to the refurbished systems. # MIL-STD-1522A (USAF) 28 MAY 1984 THIS PAGE INTENTIONALLY LEFT BLANK (FOR PAGING PURPOSES) # SECTION 6 PRESSURIZED SYSTEM REQUIREMENTS Requirements which apply to all **types** of pressurized systems are in section 6.1. Additional detail requirements applicable to specific system types are in the sections following. #### 6.1 GENERAL PRESSURIZED SYSTEM REQUIREMENTS #### 6.1.1 Design Features - 6.1.1.1 Assembly. Design components so that, during the assembly of parts, sufficient clearance exists to permit assembly of the components without damage to 0-rings or backup rings where they pass threaded parts or sharp corners. - 6.1.1.2 **Routing.** Avoid straight tubing and piping **runs-between** two rigid connection points. Where such straight runs **are** necessary, provisions shall be made for expansion joints, motion of the units, or similar **compensation** to insure that no excessive strains will be applied to the tubing and fittings. Use line bends to ease stresses induced in tubing by alignment tolerance6 **and** vibration. - 6.1.1.3 **Separation** Physically separate redundant pressure component6 and systems'from main systems for maximum safety advantage in case of damage **or** fire. - 6.1.1.4 **Shielding.** Shield pressure systems from other systems when required to minimize **all** hazards caused by **proximity** to' combustible gases, heat sources, electrical equipment, etc. Any failure in any such adjacent system shall not result in combustion or explosion of pressure fluids or components. **Shieldor** separate lines, drains, and vents **from** other high-energy systems; for example, heat, high voltage, combustible gases, **and** chemicals. Drain and vent lines will not be connected to any other lines in any way that could generate a hazardous mixture in the drain/vent line, or allow feedback of hazardous substances to the components being drained or vented. Shield or isolate pressure fluid reservoirs from combustion apparatus or other heat sources. - 6.1.1.5 **Grounding.** Electrically ground
hydraulic system components and lines **to** metallic structures. - 6.1.1.6 **Handling** .Provide fixtures for safe handling and hoisting with coordinated attachment points in the system structure, for equipment that cannot be hand-carried. Handling and hoisting loads shall be in accordance with MIL-6-8512. - 6.1.1.7 **Special Tools.** Design safety critical pressure systems so that special tools shall not be required for removal and replacement of components unless it can be shown that the use of special tools is unavoidable. - 6.1.1.8 <u>Test Points</u>. Provide **test points** if required, such that disassembly for test is not required. The test points **shall** be easily accessible *for* attachment of ground test **equipment**. - 6.1.1.9 <u>Common-Plug Test Connectors</u>. Common-plug teat connectors for pressure and return sections **shall** be designed to require positive removal of the pressure connection prior to unsealing the return connections. - 6.1.1 .10 Individual Pressure and Return Test Connectors. Individual pressure and return Lest connectors shall be designed to positively prevent inadvertent cross-connections. - 6.1.1.11 Threaded Parts: All threaded parts in safety critical components shall be securely locked to resist uncoupling forces by acceptable safe design methods. Safety wiring and self-locking nuts are examples of acceptable safe design. Torque for threaded parts in safety critical components shall be specified. - 6.1.1.12 <u>Friction Locking Devices</u>. Avoid friction-type locking devices in safety critical applications. Star washers and jam nuts shall not be used as locking devices. - 6.1.1.13 <u>Internally Threaded Bosses</u> The design of internally threaded bosses shall preclude the possibility of damage to the component or the boss threads because of screwing universal fittings to excessive depths in the bosses. - 6.1.1.14 Retainer or Snao Rings. Retainer or snap rings shall not be used in pressure systems where failure of the ring would allow connection failures or blow-outs caused by internal pressure. - 6.1.1.15 <u>Snubbers</u>. Snubbers shall be used with all Bourdon type pressure transmitters, pressure switcher, and **pressure** gages, except air presaure gages. - 6.1.1.16 Drains and Sumps. When lines are required for draining liquid explosive, flammable liquids or explosive waste, they shall be so of pockets or low spots so that a positive flow is achieved at points in the drain line. The slope shall not be less than 1/4 inch per foot at any point on the drain line. The drain system shall include a sump or basin where the fluid can safely collect. This sump or basin shall be designed so that it can be easily cleaned, and drainage easily removed. #### 6.1.2 Component Selection 6.1.2.1 **Connections.** Design or select component8 to assure that haxardoua misconnections or reverse installations within the aubsystem are not posaible. Color codes, labels, and directional arrows, are not acceptable as the primary means for preventing incorrect installation. - 6.1.2.2 Fluid Temperature. Estimate the maximum fluid temperature early in design as part of data for selection of safety critical components, such as system fluid, pressurizing gas, oil coolers, gaskets, etc. - 6.1.2.3 <u>Actuator Pressure Rating</u>. Specify components that are capable of safe actuation under pressure equal to the maximum relief valve setting in the circuit in which they are installed. - 6.1.2.4 Pressure Service Ratings. Pumps, valves/regulators, hoses, and all such prefabricated components of a pressure system shall have proven pressure service ratings equal **to** or higher than the limit-load **(maximum** expected operating pressure) and rated service life of the system. - 6.1.2.5 <u>Pump Selection</u>. Apply "The Standards of the Hydraulic Institute" in evaluating safety in pump selection. - 6.1.2.6 F<u>racture and Leakage</u>. Where leakage or fracture is hazardous to personnel or critical equipment, design so that failure occurs at the outlet threads of valves before the inlet threads or body of the valve fails under pressure. - 6.1.2.7 Oxygen System Components. Specify valves and other components for oxygen systems of 3000 psi **or** higher that are slow opening and closing types to **minimize** the potential for ignition of contaminants. Such systems shall also require electrical grounding to eliminate the possibility of the build-up of static electrical charges. - 6.1.2.8 <u>Pressure Regulators</u>. Select pressure regulators to operate **in** the center 50 percent of their total pressure range, or design to avoid creep and inaccuracies at either end of the full operating range. - 6.1.2.9 <u>Flareless Tube Fittings</u>. In all cases flareless tube fittings shall be properly preset prior to pressure application. - 6.1.2.10 <u>Manual Valves and Regulators</u>. Design manually operated valves and regulators so that over torqueing of the valve stem or regulator adjustment cannot damage soft seats to the extent that failure of the seat will result. - 6.1.2.10.1 Valve designs which utilize uncontained seats are unacceptable and shall not be specified. #### 6.1.3 Design Pressures - 6.1.3-l Over Pressure. Specify warning devices to indicate hazardous over or under pressures to operating personnel. These devices shall actuate at predetermined pressure levels designed to allow time for corrective action. - 6.1.3.2 Back Pressure. Safety critical actuations of pneumatic systems shall not be adversely affected by any back pressure resulting from concurrent operations of any other parts of the system under any **set** of conditions. - 6.1.3.3 Pressure Isolation. Components or lines that can be isolated and contain residual pressure shall be equipped with gage reading and bleed valves for pressure safety check. Bleed valves shall be directed away from operating personnel. Fittings or caps for bleeding pressure are not acceptable. - 6.1.3.4 Gas/Fluid Separation. Specify pressurized reservoir6 that are designed for gas/fluid separation with provision to entrap gas that may be hazardous to the system or safety critical actuation, and prevent its recirculation in the system. This shall include the posting of instructions adjacent to the filling point for proper bleeding when servicing. - 6.1.3.5 Compressed Gas Bleeding. Bleed compressed gas emergency systems directly to the atmosphere away from the vicinity of personnel, rather than to reservoir. If the gas combustible, consideration should be given to methods for reducing the potential for accidental ignition or explosion. # 6.1.4 Deadgr - 6.1.4.1 Acceleration and Shock Loads. Specify installation of all lines and components to withstand all expected acceleration and shock loads. Shock isolation mounts may be used if necessary to eliminate destructive vibration and interference collisions. - 6.1.4.2 Torque Loads. Specify the mounting of components, including valves, on structures having-sufficient strength to withstand torque and dynamic loads, and not supported by the tubing. However, light-weight components that do not require adjustment after installation (for example, check valves), may be supported by the tubing, provided that a tube clamp is installed on each such tube near the component. - 6.1.4.3 <u>Vibration Loads</u>. Support tubing by cushioned steel tube clamps or by multiple-block type clamps that are suitably spaced to restrain destructive vibration. #### 6.1.5 Controls - to prevent a hazardous sequence of operations and provide a fail-safe capability at all times. For example, the "open" position of remotely controlled valves that can hazardously pressurize lines leading to remotely controlled (or automatic) disconnect couplings shall be interlocked to preclude the "open" valve position coincident with the disconnected condition of the couplings. - 6.1.5.2 <u>Multiple Safety Critical Functions</u>. Pressure systems that combine several safety **critical** functions shall have sufficient controls for isolating failed functions, for the purpose of safely operating the remaining functions. - 6.1.5.3 Critical Flows and Pressures. All pressure systems shall have pressure indicating devices to monitor critical flows and pressures marked to show safe upper and lower limits of system pressure. The pressure indicators shall be so located as to be readily visible to the operating crew. - 6.1.6 Protection. Protect all systems for pressure above 500 psi in all areas where damage can occur during servicing or other operational hazards. Hazardous piping line routes that invite use as handholds or climbing bars, shall be avoided. Shield pressure lines and components of 500 psi or higher that are adjacent to safety critical equipment to protect such equipment in the event of leakage or burst of the pressure system. # 6.1.7 Electrical. - 6.1.7.1 <u>Hazardous Atmospheres</u>. Electric components for use in potentially ignitable atmospheres shall be demonstrated to be incapable of causing an explosion in the intended application. - 6.1.7.2 <u>Radio Frequency Energy</u> Electrically energized hydraulic components shall not propagate radio-frequency energy that is hazardous to other subsystems in the total system, or interfere in the operation of safety critical electronic equipment (Reference MIL-E-6051). - 6.1.7.3 <u>Grounding</u>. Electrically ground pressure system components and lines to metallic structures. - 6.1.7.4 <u>Solenoids</u>. All solenoids shall be capable of safely **withstanding** a test voltage of not less **than 1500** V **rms** at 60 cps for 1 minute between terminals and case at the maximum operating temperature of the solenoid in the functional envelope. 6.1.7.5 Electric Motor Driven Pumps. Electric motor driven pumps used in safety critical systems shall not be use for ground test purposes unless the motor is rated for reliable continuous and safe operation. Otherwise, the test parameters may perturb reliability calculations. #### **6.1.8**
Pressure Relief - 6.1.8.1 Requirement. Specify pressure relief devices on all systems having a pressure source which can exceed the maximum allowable pressure of the system, or where the malfunction/failure of any component can cause the maximum allowable pressure to be exceeded. Relief devices are required downstream of all regulating valves and orifice restrictors unless the downstream system is designed to accept full source pressure. On space systems, where operational or weight limitations preclude the use of relief valves, and systems will operate in an environment not hazardous to personnel, they can be omitted if the ground or support system contains such devices and they cannot be isolated from the airborne system during the pressurization cycle and the space vehicle cannot provide its own protection. - 6.1.8.2 <u>Flow Capacity</u>. Specify that all pressure relief devices shall provide relief **at** full flow capacity at 110% of the **MEOP** of the system, or lower. - 6.1.8.3 <u>Sizing</u>. Specify the size of pressure relief devices to withstand maximum pressure and flow capacities of the pressure source, to prevent pressure from exceeding 110% of the MEOP of the system. - 6.1.8.4 Unmanned Flight Vehicle Servicing. Where a ground system is **specifically** designed to service an unmanned flight vehicle, pressure relief protection may be provided within the ground equipment, if no capability **exists** to isolate the pressure relief protection from the flight vehicle during the pressurization cycle. #### 6.1.8.5 Automatic Relief. - 6.1.8.5.1 Low Safety Factor. Where safety factors less than 2.0 are used **in** the design **of** pressure AVE vessels, provide a means for the automatic relief, **depressurization**, and pressure verification of safety critical vessels for the event of launch abort. - **6.1.8.5.2** Confinement. Whenever any pressure volume can be confined and/or isolated by system valving, **providean** automatic pressure **relief** device. Pop-valves, rupture discs, blow-out plugs, armoring, and construction to contain the greatest possible overpressure that may develop are examples of corrective measures for system safety in cases not covered by the above paragraphs. - 6.1.8.6 <u>Venting</u>. Vent pressure relief **devices** for toxic or inert gases to safe areas or scrubbers, away from the vicinity of personnel. - 6.1.8.7 Relief Valve Isolation. Shut-off valves for maintenance purposes on the inlet side of pressurized relief valves are permissible if a means for monitoring and bleeding trapped pressure is provided and the requirements of ASME Code for unfired pressure vessels, Appendix M, paragraph UA-354, and the provisions for valve design in paragraph 6.1.2 are met. It is mandatory that the valve be locked open when the system is repressurized. #### 6.1.8.8 Negative Pressure Protection. - **6.1.8.8.1** Testing. Hydrostatic testing systems for vessels which are not designed to sustain negative internal **pressure** shall be equipped with fail-safe devices for relief of hazardous negative pressure during the period of fluid removal. Check valves and valve interlocks are examples of devices which can be used for this purpose. - 6.1.8.8.2 Storage and Transportation. Thin walled vessels which can be collapsed by a negative pressure shall have negative pressure relief and/or **prevention** devices for safety during storage and transportation. - 6.1.8.9 Reservoir Pressure Relief. Design pressurized reservoirs so that ullage volumes shall be connected to a relief valve that shall protect the reservoir and power pump from hazardous overpressure or back pressure of the system. - 6.1.8.10 <u>Air Pressure Control</u>. The air pressure control for pressurized reservoirs shall be an externally nonadjustable pressure regulating device. If this unit also contains-a reservoir pressure relief valve, design the unit so that no failure in the unit will permit overpressurization of the reservoir. - 6.1.9 <u>Contamination</u>. The following contamination related considerations shall be addressed in the **design** of pressurized systems. Contamination includes solid, liquid and gaseous material. - a. Prevent contamination from entering or developing within the system. - b. Design the system to include provisions to detect contamination. - of contamination. Include provisions for removal purge with fluid or gas which will not degrade future system performance. - d. Design the system to be tolerant of contamination. - 6.1.9.1 <u>Filtering</u>. All pressurizing fluids entering safety critical systems will be filtered through a 10 micron filter, or **finer**, before entering the system. #### **6.1.9.1.1** Fluid Filters. - a. All pressure systems shall have fluid filters in the system, designed and located to reduce the flow of contaminant particles to a safe minimum. - b. All of the circulating fluid in the system shall be filtered downstream from the pressure pump, or immediately upstream from safety critical actuators. Entrance of contamination at test points or vents shall be minimized by downstream filters. The bypass fluid or case drain flow on variable displacement pumps shall be filtered. - c. When the clogging of small orifices could cause a hazardous malfunction or failure of the system, they shall be protected by a filter element designed to prevent clogging of the orifice. Note that this includes servo valves. - d. Do not use filters or screens in suction lines of power pumps or hand pumps of safety critical systems. # 6.1.9.1.2 Air Filters. - 6.1.9.1.2.1 <u>Pressurized Reservoirs</u>. Specify air filters for hydraulic reservoir air pressurization circuits and locate air filters to protect the pressure regulating equipment from contamination. Specify dry compressed air for hydraulic reservoir pressurization. Specify a moisture removal unit to protect the pressure regulation lines and equipment. - 6.1.9.1.2.2 <u>Unpressurized Reservoirs</u>. Unpressurized hydraulic reservoirs shall have filters and dessicant units at the breather opening to preclude introduction of moisture and **contaminants** into the reservoir. # 6.1.9.2 Bleed Ports - **nove** accumulations of residue or contaminants. Provide point bleed ports where necessary for removal of trapped. The bleed valve shall be directed away from operating anel and possible ignition sources. - a. Equip components, cavities, or lines that can be isolated, with bleed valves which can be used to release retained pressure, or will indicate that continued pressure exists in the system. - b. **Bleed** valves used for reducing pressure on systems containing hazardous fluids shall be routed to a safe disposal area. - 6.1.9.2.2 Auxiliary Bleed Ports. Provide auxiliary ports where necessary to allow bleed off for safety ses. Locate bleeder valves so that they can be operated it removal of other components, and shall permit the iment of a hose to direct the bled off fluid into a iner. - 5.1.9.2.3 Filler Cap Bleed. Reservoir filler caps shall ie design provisions which shall automatically bleed the roir on opening, so that possible ullage pressure can not I hazardous kinetic energy to either the filler caps, the in the reservoir, or the system. # 6.1.10 Control Devices - 6.1.10.1 Directional Control Valves. Design safety cal pressure systems incorporating two or more directional ol valves to preclude time prossibility of inadvertently cing the flow or pressure from one valve into the flow or pressure path intended for another valve, with any combination lve settings possible in the total system. - **6.1.10.2** Overtravel. Design control devices to prevent ravel or undertravel that may contribute to a hazardous :ion, or damage to the valve. - 6.1.10.3 Pressure and Volume Control Stops. All Ire and volume controls shall have stops, or equivalent, to It settings outside their nominal safe working ranges. #### 6.1.10.4 Manually Operated Levers. - a. Components that have integrated manually operated levers shall provide levers and stops capable of withstanding the limit torques specified by MIL-STD-1472. - b. Provide levers and stops on remote controls, capable of withstanding a limit torque of 1800 lb-in. - c. Because jamming is possible, do not use sheathed flexible actuators for valve controls in safety critical pressure systems; for example, push-pull wires, torque wires, etc., that are sheathed are not acceptable. - 6.1.10.5 Limit Torque. Control components that have integral manually operated levers shall provide levers and stops capable of withstanding the following limit torques. | Lever Radius (R) | Design Torque | |--------------------|----------------------| | Less than 3 inches | $50 \times R$ lb-in. | | 3 to 6 inches | 75 x R lb-in. | | over 6 inches | 150 x R lb-in. | #### 6.1.11 Accumulators - 6.1.11.1 Accumulator Design. Design accumulators in accordance with the pressure vessel standards for ground systems and locate for minimal probability of mechanical damage and for minimum escalation of material damage or personnel injury in the event of a major failure such as tank rupture. - 6.1.11.2 Accumulator Gas Pressure Gages. Accumulator gas pressure gages shall not be used to indicate system pressure for operational or maintenance purposes. - 6.1.11.3 Accumulator **Identification.** Gas type and pressure level shall be posted on, or immediately adjacent to the accumulator. # 6.1.12 Flexhose 6.1.12.1 <u>Installation</u>. Use **flexhose** between any two connections where relative motion can be expected to fatigue metal tube or pipe. Design **flexhose** installation to avoid abrasive contact with adjacent structure or moving parts. Rigid supports shall not be used on flexhose. - 6.1.12.2 Restraining Devices. Design flexhose installation which are sit feet long or greater so that restraint is provided on both the hose and adjacent structure at no greater than air-foot intervals and at each end to prevent whiplash in the event of a burst. Restraining
device6 shall be designed and demonstrated to contain a force not leas than 1.5 X openline pressure force. (See Table IV) The design safety factor 6hall be not leas than 2. Sand or shot bags placed on top of flexible hose is not an acceptable restraint. Do not use hose clamp type restraining devices. - 6.1.12.3 **Plexhose Stress. Design flexhose** inatrllationa that shall not produce stress **or** strain of any nature in the hard lines **or** components. **Include** stresses induced because **of** dimensional changes caused by pressure **or** temperature variations, or **torque forces** induced in the **flexhose.** - 6.1.12.4 **Temporary Installations.** Temporary installations using chains or cables anchored to substantial fixed points, lead ingots or other weights, are acceptable providing they meet the requirements of paragraph 6.1.12.1. Protect flerhoae from kinking or abrasive chafing from the restraining device or damage from adjacent structure or moving parts that may cause reduction in strength. TABLE IV. Open Line Force Calculation Factor | | ETER OPENING | | FORCE FACTOR FOR OF SOURCE PRESSURE (LB) | |-------|---------------------|--|--| | | 1/8
1/4
3/8 | | 0.18506 0.2832 | | | 1/2 ;
5/8
3/4 | | 0.3814 0.4796
0.5777
0.6759 | | | 7/8
1 | | 0.7741
0.0723 | | NOTE: | select applicabl | e force acting or
Le diameter and
source pressure () | multiply righthand | #### 6.2 **HYDRAULIC SYSTEM REQUIREMENTS** #### 6.2.1 Hydraulic System Components - 6.2.1.1 <u>Component Integrity</u>. When the **system** pressure profile is indeterminate; perform **safety tests** 6t **pressure no** lower than 67 percent of the maximum allowable **working pressure** for component6 rated up to 3000 **psig** and no lower than 80 percent of the maximum allowable working pressure for **components** rated above 3000 **psig**. - 6.2.1.1.1 <u>Component Section</u>. Select component6 which are compatible with and rated for the viscosity of the hydraulic fluid to be used. - 6.2.1.2 **Cycling.** Cycling capability for safety critical component6 shall be not **less** than 400% of the total number of expected cycles, including **system** tests, but not less than 2000 **cycles.** For **service** above a temperature of **160°F**, an additional cycling capability equivalent to the **above** shall be required **18** a **maximum**. - 6.2.1.3 **Actuators.** Safety critical hydraulic? actuators shall have positive mechanical stop6 at the **extranes of safe** motion. - 6.2.1.4 <u>Shutoff Valves</u>. Hydraulic fluid reservoirs and tanks shall be equipped with shutoff valves, operable from a relatively safe location in the event of a hydraulic system emergency. - 6.2.1.5 <u>Variable Response</u>. To not use shuttle valve6 in Safety critical hydraulic systems where the event Of a force balance on both inlet port6 may occur, thu6 causing the shuttle valve to restrict flow from the outlet port. - 6.2.1.6 **Fire Resistant Fluids.** Where system leakage can **expose** hydraulic fluid to potential ignition **sources** or **is** adjacent to a potential fire zone and the **possibility** of flame **propagation** exists, **fire resistant** or **flame** proof hydraulic fluid shall be used. - 6.2.1.7 <u>Accumulators</u>. Fydraulic systems incorporating accumulators shall be interlocked to either vent or isolate accumulator fluid pressure when power is shutoff. - 6.2.1.8 <u>Adjustable Orifices</u> Do not use adjustable orifice restrictor valve6 in safety'critical hydraulic systems. #### 6.2.1.9 Lock Valves. - when two or more hydraulic actuators are mechanically tied together, only one lock valve shall be used to hydraulically lock all the actuators. - b. Do not use hydraulic lock valves for safety critical lockup periods likely to involve extreme temperature changes, unless fluid expansion and contraction effects are safely accounted for. - 6.2.1.10 Hydraulic Reservoir. Whenever possible, the hydraulic reservoir should be located at the highest point in the system. If this is not possible in safety critical **systems**, procedures must be developed to detect air in actuators or other safety critical components and to assure that the system is properly bled prior to each use. - 6.2.2 <u>Pressure Limits</u>. Hydraulic systems installations will be limited to a maximum pressure of 15,000 psig. #### NOTE There is no intent to restrain development of systems capable of higher pressures, however, the employment of such systems must be preceded by complete development and qualification **that** include6 appropriate safety tests. ## 6.2.3 Cavitation. - 6.2.3.1 <u>Inlet Pressure</u>. Specify the inlet pressure of hydraulic pumps in safety critical systems to prevent cavitation effects in the pump passages **or** outlets. - 6.2.3.2 <u>Fluid Column</u>. Safety critical hydraulic systems shall have positive protection against breaking the fluid column in the suction line during standby. - 6.2.4 **Redundancy.** Hydraulic systems for primary flight control of man**ned vehicles** shall have redundant features for all major aspects of operation and control and be essentially independent of systems non-critical to safety. #### NOTE Provision may be made for a safety critical system to draw power from a non-critical system, provided that no single failure can cause loss of both systems because of this connection. #### 6.2.5 Hydraulic Lockup. 6.2.5.1 <u>Emergency Disengage</u>. Hydraulic systems that provide for manual takeover shall automatically disengage or allow **by-p**ass of the main hydraulic system upon the act of manual takeover. #### 6.2.5.2 Emergency By-Pass. - a. Safety critical hydraulic systems or alternate by-pass systems provided for safety shall not be rendered inoperative because of back pressure under any set of conditions. - b. Design the system so that a hydraulic lock resulting from an unplanned disconnection of a self-seating coupling or other component shall not cause damage to the system or to adjacent property, or injury to personnel. ## 6.2.6 Hydraulic System Pressure Relief - 6.2.6.1 <u>Pump Pressure Relief</u>. Hydraulic systems employing power operated pumps shall include a pressure regulating device and an independent safety relief valve. - 6.2.6.2 Thermal Pressure Relief. Thermal expansion relief valves shall be installed as necessary to prevent syst damage from thermal expansion of hydraulic fluid, as in the event of gross overheating. Internal valve leakage not be considered an acceptable method of providing thermal relief. Thermal relief valve setting shall not exceed 150 psi above the value for system relief valve setting. Vents shall outlet only to areas of relative safety from fire hazard. Hydraulic blow-out fuses (soft plugs) shall not be used in systems having temperatures above 160°F. - 6.2.6.3 Location. Pressure **relief** valves shall be located in hydraulic systems wherever necessary to assure that the pressure in any part of a power system shall not exceed the safe limit above the regulated pressure of the system. # 6.3 **PNEUMATIC** SYSTEMS REQUIREMENTS # 6.3.1 Pneumatic System Components. 6.3.1.1 Component Integrity. Pneumatic components (other than tanks) for **salety** critical systems shall exhibit safe endurance against hazardous failure modes for not less than 400% of the **total** number of expected cycles including system test. Pneumatic ground support emergency system components shall have safe endurance of a minimum of 5000 cycles. - 6.3.1.2 **Configuration** The **configuration of** pneumatic components shall **permit** bleeding of entrapped moisture, lubricants, particulate material, **or other** foreign matter hazardous to **this System**. - 6.3.1.3 Compressors. Select compressors which are designed to sustain not less than 2.5 % delivery pressure, after allowance for loss of strength of the materials equivalent to not less than that Caused by 1000 hours aging st 275 °F. - 6.3.1.4 <u>Actuators</u>. Safety critical pneumatic actuators shall have positive mechanical stops at the **extremes** of safe **motion**. - 6.3.1.5 Adjustable Orifice Restrictors Adjustable orifice restrictor valves shall not be used in-safety critical pneumatic systems. #### 6.3.2 Controls. 6.3.2.1 **Manual Takeover.** Provide for automatic disengagement or by-pass for pneumatic systems that provide **for** manual takeover in the event of a hazardous situation. Provide positive indication **of** disengagement. Custodian: Air Force - 19 Preparing Activity: Air Force - 19 (Project lumber SAFT-F002) Review Activity: Army - AR MIL-STD-1522A (USAF) .. 28 MAY 1984 THIS PAGE INTENTIONALLY LEFT BLANK (FOR PAGING PURPOSES)